login
A228887
a(n) = binomial(3*n + 1,3).
3
4, 35, 120, 286, 560, 969, 1540, 2300, 3276, 4495, 5984, 7770, 9880, 12341, 15180, 18424, 22100, 26235, 30856, 35990, 41664, 47905, 54740, 62196, 70300, 79079, 88560, 98770, 109736, 121485, 134044, 147440, 161700, 176851, 192920, 209934, 227920, 246905
OFFSET
1,1
FORMULA
a(n) = -a(-n) = binomial(3*n + 1,3) = 1/6*(3*n + 1)*(3*n)*(3*n - 1).
G.f.: x*(4 + 19*x + 4*x^2)/(1 - x)^4 = 4*x + 35*x^2 + 120*x^3 + ....
Sum_{n>=1} 1/a(n) = 3*log(3) - 3.
Sum_{n>=1} (-1)^n/a(n) = 4*log(2) - 3.
E.g.f.: exp(x)*x*(8 + 27*x + 9*x^2)/2. - Stefano Spezia, Sep 20 2024
MAPLE
seq(binomial(3*n+1, 3), n = 1..38);
MATHEMATICA
Table[(Binomial[3n + 1, 3]), {n, 40}] (* Vincenzo Librandi, Sep 10 2013 *)
LinearRecurrence[{4, -6, 4, -1}, {4, 35, 120, 286}, 40] (* Harvey P. Dale, Jan 11 2015 *)
PROG
(Magma) [Binomial(3*n+1, 3): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
CROSSREFS
Cf. A006566 (binomial(3*n,3)) and A228888 (binomial(3*n + 2,3)).
Sequence in context: A257600 A211612 A068968 * A185592 A296280 A011195
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Sep 09 2013
STATUS
approved