login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011195
a(n) = n*(n+1)*(2*n+1)*(3*n+1)/6.
2
0, 4, 35, 140, 390, 880, 1729, 3080, 5100, 7980, 11935, 17204, 24050, 32760, 43645, 57040, 73304, 92820, 115995, 143260, 175070, 211904, 254265, 302680, 357700, 419900, 489879, 568260, 655690, 752840, 860405, 979104, 1109680, 1252900, 1409555, 1580460, 1766454
OFFSET
0,2
FORMULA
G.f.: x*(4 +15*x +5*x^2)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
E.g.f.: x*(24 + 81*x + 47*x^2 + 6*x^3)*exp(x)/6. - G. C. Greubel, Mar 03 2020
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 36 - 9*sqrt(3)*Pi/2 + 48*log(2) - 81*log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (9*sqrt(3)-12)*Pi - 36*(1-log(2)). (End)
MAPLE
seq( n*mul(j*n+1, j=1..3)/6, n=0..40); # G. C. Greubel, Mar 03 2020
MATHEMATICA
Table[n(n+1)(2n+1)(3n+1)/6, {n, 0, 40}] (* Harvey P. Dale, Feb 24 2011 *)
PROG
(PARI) vector(41, n, my(m=n-1); m*prod(j=1, 3, j*m+1)/6) \\ G. C. Greubel, Mar 03 2020
(Magma) [n*(&*[j*n+1:j in [1..3]])/6: n in [0..40]]; // G. C. Greubel, Mar 03 2020
(Sage) [n*product(j*n+1 for j in (1..3))/6 for n in (0..40)] # G. C. Greubel, Mar 03 2020
(GAP) List([0..40], n-> n*(n+1)*(2*n+1)*(3*n+1)/6 ); # G. C. Greubel, Mar 03 2020
CROSSREFS
Cf. A094323.
Sequence in context: A228887 A185592 A296280 * A025195 A350407 A362346
KEYWORD
nonn,easy
STATUS
approved