login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094323
a(n) = n*(n+1)*(2n+1)*(3n+1)*(4n+1)/30.
2
0, 4, 63, 364, 1326, 3696, 8645, 17864, 33660, 59052, 97867, 154836, 235690, 347256, 497553, 695888, 952952, 1280916, 1693527, 2206204, 2836134, 3602368, 4525917, 5629848, 6939380, 8481980, 10287459, 12388068, 14818594, 17616456, 20821801, 24477600, 28629744
OFFSET
0,2
FORMULA
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 300 + (135*sqrt(3)/2 - 160)*Pi - 1200*log(2) + 1215*log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (60 + 160*sqrt(2) - 135*sqrt(3))*Pi + (160*sqrt(2) - 380)*log(2) - 320*sqrt(2)*log(2-sqrt(2)) - 300. (End)
EXAMPLE
a(4) = 4*5*9*13*17/30 = 1326.
MATHEMATICA
a[n_] := n*(n+1)*(2*n+1)*(3*n+1)*(4*n+1)/30; Array[a, 30, 0] (* Amiram Eldar, Mar 08 2022 *)
PROG
(PARI) a(n) = n*(n+1)*(2*n+1)*(3*n+1)*(4*n+1)/30; \\ Michel Marcus, Aug 15 2013
CROSSREFS
Cf. A011195.
Sequence in context: A102196 A102192 A102197 * A286438 A224249 A361140
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Jun 03 2004
EXTENSIONS
More terms from Michel Marcus, Aug 15 2013
STATUS
approved