login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066480
Start of first run of exactly n consecutive integers with same number of anti-divisors.
0
5, 1, 19, 212, 231, 353755, 7077517, 841891, 96723128, 640141432, 83101215664, 3774913237385, 29738569261171
OFFSET
1,1
COMMENTS
See A066272 for definition of anti-divisor.
a(11) > 10^10. - Donovan Johnson, Apr 13 2013
LINKS
EXAMPLE
To illustrate the first 3 terms, here are the numbers of anti-divisors of the numbers 1 through 22: [0, 0, 1, 1, 2, 1, 3, 2, 2, 3, 3, 2, 4, 3, 3, 2, 5, 4, 3, 3, 3, 5] (see A066272). - N. J. A. Sloane, Oct 14 2019
MATHEMATICA
a066272[n_] := Count[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]
a[0] = 5;
a[n_] := For[i = 1, True, ++i, If[Equal @@ Table[a066272[j], {j, i, i + n}], Return[i]]]
a /@ Range[0, 4] (* Julien Kluge, Dec 03 2016 *)
PROG
(PARI) nbad(n) = #select(t->n%t && t<n, concat(concat(divisors(2*n-1), divisors(2*n+1)), 2*divisors(n))); \\ A066272
isok(k, n) = {my(nb=nbad(k)); if ((k>1) && nbad(k-1) == nb, return (0)); for (j=1, n-1, if (nbad(k+j) != nb, return(0)); ); nbad(k+n) != nb; }
a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Oct 11 2019
CROSSREFS
Sequence in context: A147369 A377879 A375363 * A136394 A145372 A145373
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Jan 02 2002
EXTENSIONS
a(7) corrected and a(9)-a(10) from Donovan Johnson, Apr 13 2013
a(11)-a(12) from Jud McCranie, Oct 10 2019
a(11)-a(12) decremented by 1 by Michel Marcus, Oct 17 2019
a(13) from Jud McCranie, Oct 22 2019
STATUS
approved