login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = C(3^n,n).
11

%I #16 Feb 06 2023 10:05:55

%S 1,3,36,2925,1663740,6774333588,204208594169580,47025847059877940202,

%T 84798009611754271531960140,1219731290030242386267605060168700,

%U 141916030352038369973126553950792759280336

%N a(n) = C(3^n,n).

%H Vincenzo Librandi, <a href="/A136393/b136393.txt">Table of n, a(n) for n = 0..45</a>

%F G.f.: A(x) = Sum_{n>=0} log(1 + 3^n*x)^n / n!.

%F a(n) = (1/n!) * Sum_{k=0..n} Stirling1(n, k) * 3^(n*k). - _Paul D. Hanna_, Feb 05 2023

%F a(n) ~ 3^(n^2)/n!. - _Vaclav Kotesovec_, Jul 02 2016

%t Table[Binomial[3^n,n], {n,0,10}] (* _Vaclav Kotesovec_, Jul 02 2016 *)

%o (PARI) a(n)=binomial(3^n,n)

%o (PARI) /* G.f. A(x) as Sum of Series: */

%o a(n)=polcoeff(sum(k=0,n,log(1+3^k*x +x*O(x^n))^k/k!),n)

%o (PARI) {a(n) = (1/n!) * sum(k=0, n, stirling(n, k, 1) * 3^(n*k) )}

%o for(n=0, 20, print1(a(n), ", ")) \\ _Paul D. Hanna_, Feb 05 2023

%o (Magma) [Binomial(3^n,n): n in [0..25]]; // _Vincenzo Librandi_, Sep 13 2016

%Y Cf. A014070 (C(2^n, n)).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 28 2007