login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136390
Triangle read by rows of coefficients of Chebyshev-like polynomials P_{n,4}(x) with 0 omitted (exponents in increasing order).
1
1, -4, 2, 6, -9, 4, -4, 16, -20, 8, 1, -14, 41, -44, 16, 6, -44, 102, -96, 32, -1, 26, -129, 248, -208, 64, -8, 96, -360, 592, -448, 128, 1, -42, 321, -968, 1392, -960, 256, 10, -180, 1002, -2528, 3232, -2048, 512, -1, 62, -681, 2972, -6448, 7424, -4352, 1024
OFFSET
4,2
COMMENTS
If U_n(x), T_n(x) are Chebyshev's polynomials then U_n(x)=P_{n,0}(x), T_n(x)=P_{n,1}(x).
Let n>=4 and k be of the same parity. Consider a set X consisting of (n+k)/2-4 blocks of the size 2 and an additional block of the size 4, then (-1)^((n-k)/2)a(n,k) is the number of n-4-subsets of X intersecting each block of the size 2.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 4..10194 (rows 4 <= n <= 200, flattened).
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
FORMULA
If n>=4 and k are of the same parity then a(n,k)= (-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-4, i)*binomial(n+k-4-2*i, n-4), i=0..(n+k)/2-4) and a(n,k)=0 if n and k are of different parity.
EXAMPLE
Rows are (1),(-4,2),(6,-9,4),(-4,16,-20,8),... since P_{4,4}=x^4, P_{5,4}=-4x^3+2x^5, P_{6,4}=6x^2-9x^4+4x^6,...
MAPLE
if modp(n-k, 2)=0 then a[n, k]:=(-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-4, i)*binomial(n+k-4-2*i, n-4), i=0..(n+k)/2-4); end if;
MATHEMATICA
DeleteCases[#, 0] &@ Flatten@ Table[(-1)^((n - k)/2) * Sum[(-1)^i * Binomial[(n + k)/2 - 4, i] Binomial[n + k - 4 - 2 i, n - 4], {i, 0, (n + k)/2 - 4}], {n, 4, 14}, {k, 0 + Boole[OddQ@ n], n, 2}] (* Michael De Vlieger, Jul 05 2019 *)
CROSSREFS
Sequence in context: A302659 A363705 A134239 * A019610 A344792 A058613
KEYWORD
sign,tabf
AUTHOR
Milan Janjic, Mar 30 2008, revised Apr 05 2008
STATUS
approved