login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows of coefficients of Chebyshev-like polynomials P_{n,4}(x) with 0 omitted (exponents in increasing order).
1

%I #11 Jul 05 2019 21:01:32

%S 1,-4,2,6,-9,4,-4,16,-20,8,1,-14,41,-44,16,6,-44,102,-96,32,-1,26,

%T -129,248,-208,64,-8,96,-360,592,-448,128,1,-42,321,-968,1392,-960,

%U 256,10,-180,1002,-2528,3232,-2048,512,-1,62,-681,2972,-6448,7424,-4352,1024

%N Triangle read by rows of coefficients of Chebyshev-like polynomials P_{n,4}(x) with 0 omitted (exponents in increasing order).

%C If U_n(x), T_n(x) are Chebyshev's polynomials then U_n(x)=P_{n,0}(x), T_n(x)=P_{n,1}(x).

%C Let n>=4 and k be of the same parity. Consider a set X consisting of (n+k)/2-4 blocks of the size 2 and an additional block of the size 4, then (-1)^((n-k)/2)a(n,k) is the number of n-4-subsets of X intersecting each block of the size 2.

%H Michael De Vlieger, <a href="/A136390/b136390.txt">Table of n, a(n) for n = 4..10194</a> (rows 4 <= n <= 200, flattened).

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic">Two enumerative functions</a>.

%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Janjic/janjic19.html">On a class of polynomials with integer coefficients</a>, JIS 11 (2008) 08.5.2

%H Milan Janjić, <a href="https://arxiv.org/abs/1905.04465">On Restricted Ternary Words and Insets</a>, arXiv:1905.04465 [math.CO], 2019.

%F If n>=4 and k are of the same parity then a(n,k)= (-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-4, i)*binomial(n+k-4-2*i, n-4), i=0..(n+k)/2-4) and a(n,k)=0 if n and k are of different parity.

%e Rows are (1),(-4,2),(6,-9,4),(-4,16,-20,8),... since P_{4,4}=x^4, P_{5,4}=-4x^3+2x^5, P_{6,4}=6x^2-9x^4+4x^6,...

%p if modp(n-k, 2)=0 then a[n, k]:=(-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-4, i)*binomial(n+k-4-2*i, n-4), i=0..(n+k)/2-4); end if;

%t DeleteCases[#, 0] &@ Flatten@ Table[(-1)^((n - k)/2) * Sum[(-1)^i * Binomial[(n + k)/2 - 4, i] Binomial[n + k - 4 - 2 i, n - 4], {i, 0, (n + k)/2 - 4}], {n, 4, 14}, {k, 0 + Boole[OddQ@ n], n, 2}] (* _Michael De Vlieger_, Jul 05 2019 *)

%Y Cf. A008310, A053117.

%K sign,tabf

%O 4,2

%A _Milan Janjic_, Mar 30 2008, revised Apr 05 2008