login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362581
Number of alternating permutations on [2n+1] with 1 in position n+1.
2
1, 2, 6, 80, 1750, 64512, 3438204, 253913088, 24687555750, 3062092267520, 471565937953396, 88298062293762048, 19753693667117055100, 5203824518733863321600, 1594426273578194363292600, 562191171748426920367226880, 226024705816530632892282399750
OFFSET
0,2
LINKS
FORMULA
a(n) = binomial(2*n,n)*A000111(n)^2:
a(n) = A104345(2*n,n).
EXAMPLE
a(0) = 1: 1.
a(1) = 2: 213, 312.
a(2) = 6: 23154, 24153, 25143, 34152, 35142, 45132.
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
a:= n-> binomial(2*n, n)*b(n, 0)^2:
seq(a(n), n=0..20);
PROG
(Python)
from itertools import accumulate
from math import comb
def A362581(n):
if n <= 1: return n+1
blist = (0, 1)
for _ in range(n-1):
blist = tuple(accumulate(reversed(blist), initial=0))
return blist[-1]**2*comb(n<<1, n) # Chai Wah Wu, Apr 25 2023
CROSSREFS
Sequence in context: A114552 A302343 A244084 * A352284 A352313 A357028
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 25 2023
STATUS
approved