OFFSET
0,4
COMMENTS
Here, w = w_1,w_2,...,w_(2n+1) is an alternating permutation if w_1 < w_2 > w_3 < ... < w_(2n) > w_(2n+1).
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
EXAMPLE
T(2,1) = 6 because we have: {2, 3, 1, 5, 4}, {2, 4, 1, 5, 3}, {2, 5, 1, 4, 3}, {3, 4, 1, 5, 2}, {3, 5, 1, 4, 2}, {4, 5, 1, 3, 2}.
Triangle begins
1;
1, 1;
5, 6, 5;
61, 75, 75, 61;
1385, 1708, 1750, 1708, 1385;
50521, 62325, 64050, 64050, 62325, 50521;
...
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
T:= (n, k)-> binomial(2*n, 2*k)*b(2*k, 0)*b(2*(n-k), 0):
seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Apr 25 2023
MATHEMATICA
nn = 6; B[n_] := (2 n)!/2^n; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/e[-u z]*1/e[-z], {z, 0, nn}], {z, u}]] // Grid
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Apr 25 2023
STATUS
approved