login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104345
Triangle read by rows: T(n,k) is the number of alternating permutations on [n+1] with 1 in position k+1, 0<=k<=n.
5
1, 1, 1, 1, 2, 1, 2, 3, 3, 2, 5, 8, 6, 8, 5, 16, 25, 20, 20, 25, 16, 61, 96, 75, 80, 75, 96, 61, 272, 427, 336, 350, 350, 336, 427, 272, 1385, 2176, 1708, 1792, 1750, 1792, 1708, 2176, 1385, 7936, 12465, 9792, 10248, 10080, 10080, 10248, 9792, 12465, 7936
OFFSET
0,5
LINKS
FORMULA
The mixed o.g.f./e.g.f. is Sum_{k=0..n} T(n, k)*x^n/n!*y^k = (sec(x) + tan(x))*(sec(x*y) + tan(x*y)).
T(n,k) = binomial(n,k)*A000111(k)*A000111(n-k). - Alois P. Heinz, Apr 25 2023
EXAMPLE
Table begins
\ k..0....1....2....3....4....
n
0 |..1
1 |..1....1
2 |..1....2....1
3 |..2....3....3....2
4 |..5....8....6....8....5
5 |.16...25...20...20...25...16
6 |.61...96...75...80...75...96...61
7 |272..427..336..350..350..336..427..272
For example, T(3,1) counts 2143, 3142, 4132 - the alternating permutations on [4] with 1 in position 2.
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
T:= (n, k)-> binomial(n, k)*b(k, 0)*b(n-k, 0):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 25 2023
MATHEMATICA
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];
T[n_, k_] := Binomial[n, k]*b[k, 0]*b[n-k, 0];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz *)
CROSSREFS
Cf. A104346. Row sums are A001250; column k=0 and main diagonal are the up-down numbers (A000111); column k=1 is A065619.
T(2n,n) gives A362581.
Sequence in context: A342095 A340828 A123265 * A244516 A363264 A002339
KEYWORD
nonn,tabl
AUTHOR
David Callan, Mar 02 2005
STATUS
approved