OFFSET
0,5
LINKS
Alois P. Heinz, Rows n = 0..150, flattened
FORMULA
The mixed o.g.f./e.g.f. is Sum_{k=0..n} T(n, k)*x^n/n!*y^k = (sec(x) + tan(x))*(sec(x*y) + tan(x*y)).
EXAMPLE
Table begins
\ k..0....1....2....3....4....
n
0 |..1
1 |..1....1
2 |..1....2....1
3 |..2....3....3....2
4 |..5....8....6....8....5
5 |.16...25...20...20...25...16
6 |.61...96...75...80...75...96...61
7 |272..427..336..350..350..336..427..272
For example, T(3,1) counts 2143, 3142, 4132 - the alternating permutations on [4] with 1 in position 2.
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
T:= (n, k)-> binomial(n, k)*b(k, 0)*b(n-k, 0):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 25 2023
MATHEMATICA
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];
T[n_, k_] := Binomial[n, k]*b[k, 0]*b[n-k, 0];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
David Callan, Mar 02 2005
STATUS
approved