login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A244516
Number of partitions of n where the minimal multiplicity of any part is 3.
2
0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 2, 3, 3, 2, 7, 3, 5, 9, 8, 7, 16, 12, 17, 23, 23, 25, 42, 33, 43, 59, 61, 59, 95, 85, 104, 128, 137, 148, 207, 189, 233, 283, 307, 320, 430, 424, 498, 584, 634, 686, 872, 864, 1011, 1177, 1280, 1365, 1687, 1736, 1987, 2258, 2470, 2674, 3208, 3303, 3767, 4277, 4658, 5014, 5916, 6201
OFFSET
1,9
COMMENTS
Column k=3 of A243978.
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..1000
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
end:
a:= n-> b(n$2, 3) -b(n$2, 4):
seq(a(n), n=1..80);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
a[n_] := b[n, n, 3] - b[n, n, 4];
Array[a, 80] (* Jean-François Alcover, May 01 2018, translated from Maple *)
CROSSREFS
Sequence in context: A340828 A123265 A104345 * A363264 A002339 A377905
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 29 2014
STATUS
approved