login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244519
Expansion of Product_{n>=1} (1 + H(x^n)) where H(x) is the g.f. of A000081.
1
1, 1, 2, 4, 8, 16, 35, 76, 175, 414, 1009, 2510, 6382, 16448, 42961, 113352, 301715, 808932, 2182739, 5921803, 16143975, 44199809, 121477237, 335015538, 926814691, 2571322157, 7152404733, 19942874638, 55729271645, 156051344975, 437801148097, 1230423785329, 3463777894236, 9766002585763, 27574869734583, 77965430442158
OFFSET
0,3
COMMENTS
Which combinatorial objects does this sequence count?
LINKS
PROG
(PARI)
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
A000081=concat([0], A);
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
T=prod(n=1, N, 1 + H(x^n));
Vec(T)
CROSSREFS
Cf. A001372 (expansion of 1/Product_{n>=1} (1 - H(x^n))).
Sequence in context: A180207 A013025 A034339 * A247293 A337716 A126137
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 10 2014
STATUS
approved