login
A244519
Expansion of Product_{n>=1} (1 + H(x^n)) where H(x) is the g.f. of A000081.
1
1, 1, 2, 4, 8, 16, 35, 76, 175, 414, 1009, 2510, 6382, 16448, 42961, 113352, 301715, 808932, 2182739, 5921803, 16143975, 44199809, 121477237, 335015538, 926814691, 2571322157, 7152404733, 19942874638, 55729271645, 156051344975, 437801148097, 1230423785329, 3463777894236, 9766002585763, 27574869734583, 77965430442158
OFFSET
0,3
COMMENTS
Which combinatorial objects does this sequence count?
LINKS
PROG
(PARI)
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
A000081=concat([0], A);
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
T=prod(n=1, N, 1 + H(x^n));
Vec(T)
CROSSREFS
Cf. A001372 (expansion of 1/Product_{n>=1} (1 - H(x^n))).
Sequence in context: A180207 A013025 A034339 * A247293 A337716 A126137
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 10 2014
STATUS
approved