login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247293 Number of weighted lattice paths B(n) having no uHd strings. 4
1, 1, 2, 4, 8, 16, 35, 77, 172, 391, 899, 2085, 4877, 11490, 27236, 64916, 155483, 374027, 903286, 2189219, 5322965, 12980660, 31740404, 77804885, 191160040, 470662449, 1161123461, 2869754099, 7104856781, 17618234456, 43754467510, 108816781175 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
a(n) = A247292(n,0).
LINKS
M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
FORMULA
G.f. G = G(z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z^2).
D-finite with recurrence +(n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +(n-3)*a(n-4) +(2*n-9)*a(n-5) +2*(-n+6)*a(n-6) +(-2*n+15)*a(n-7) +(n-12)*a(n-10)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(6)=35 because among the 37 (=A004148(7)) members of B(6) only huHd and uHdh contain uHd.
MAPLE
eq := G = 1+z*G+z^2*G+z^3*(G-z^2)*G: G := RootOf(eq, G): Gser := series(G, z = 0, 37): seq(coeff(Gser, z, n), n = 0 .. 35);
# second Maple program:
b:= proc(n, y, t) option remember; `if`(y<0 or y>n or t=3, 0,
`if`(n=0, 1, b(n-1, y, 0)+`if`(n>1, b(n-2, y, `if`(t=1,
2, 0))+b(n-2, y+1, 1), 0)+b(n-1, y-1, `if`(t=2, 3, 0))))
end:
a:= n-> b(n, 0$2):
seq(T(n), n=0..40); # Alois P. Heinz, Sep 16 2014
MATHEMATICA
b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n || t == 3, 0, If[n == 0, 1, b[n-1, y, 0] + If[n>1, b[n-2, y, If[t == 1, 2, 0]] + b[n-2, y+1, 1], 0] + b[n-1, y-1, If[t == 2, 3, 0]]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A013025 A034339 A244519 * A337716 A126137 A085294
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 16 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 06:21 EST 2024. Contains 370240 sequences. (Running on oeis4.)