The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244514 Numbers n such that the integers formed by all cyclic permutations of the decimal digits of n have the same prime divisors. 0
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 486, 555, 648, 666, 777, 864, 888, 999, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 11111, 22222, 33333, 44444, 55555, 66666, 77777, 88888, 99999, 111111, 222222, 242424, 333333, 424242, 444444 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS {a(n)} = {A010785} union {486, 648, 864, 242424, 424242, 484848, 486486, 648648, 848484, 864864,... } where A010785 are the repdigit numbers. LINKS Table of n, a(n) for n=1..55. EXAMPLE 486486 is in the sequence because the prime divisors of 486486, 864864 and 648648 are 2,3,7,11 and 13. MAPLE with(numtheory): T:=array(1..10):U:=array(1..10): for n from 11 to 10^6 do: c:=1:x:=convert(n, base, 10):n1:=nops(x):si:=factorset(n): for i from 1 to n1 do:T[i]:=x[n1-i+1]:od: for j from 1 to n1-1 do: for k from 1 to n1-1 do: U[k]:=T[k+1]: od: U[n1]:=T[1]:s:=sum('U[n1-p+1]*10^(p-1)', 'p'=1..n1): if factorset(s)=si then c:=c+1: else fi: for l from 1 to n1 do: T[l]:=U[l]: od: if c=n1 then printf(`%d, `, n): else fi: od: od: CROSSREFS Cf. A010785. Sequence in context: A082937 A214019 A160818 * A082810 A344550 A010785 Adjacent sequences: A244511 A244512 A244513 * A244515 A244516 A244517 KEYWORD nonn,base AUTHOR Michel Lagneau, Jun 29 2014 EXTENSIONS Single-digit numbers added by N. J. A. Sloane, Jul 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 22:43 EST 2024. Contains 370265 sequences. (Running on oeis4.)