login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334381
Decimal expansion of Sum_{k>=0} 1/(2^k*(k!)^2).
8
1, 5, 6, 6, 0, 8, 2, 9, 2, 9, 7, 5, 6, 3, 5, 0, 5, 3, 7, 2, 9, 2, 3, 8, 6, 9, 1, 2, 6, 9, 2, 7, 7, 1, 7, 8, 8, 7, 1, 5, 8, 8, 2, 5, 3, 9, 8, 0, 2, 6, 9, 7, 0, 7, 5, 2, 7, 4, 3, 3, 8, 8, 2, 1, 1, 8, 2, 0, 4, 0, 2, 5, 8, 3, 8, 2, 3, 4, 9, 8, 5, 0, 9, 0, 8, 5, 8, 8, 9, 3, 8, 8, 3, 3, 8, 7, 0, 9, 9, 2, 4, 0, 9, 3, 1, 9, 7, 8, 3, 8
OFFSET
1,2
FORMULA
Equals BesselI(0,sqrt(2)).
Equals BesselJ(0,sqrt(2)*i). - Jianing Song, Sep 18 2021
EXAMPLE
1/(2^0*0!^2) + 1/(2^1*1!^2) + 1/(2^2*2!^2) + 1/(2^3*3!^2) + ... = 1.56608292975635053729238691...
MATHEMATICA
RealDigits[BesselI[0, Sqrt[2]], 10, 110] [[1]]
PROG
(PARI) suminf(k=0, 1/(2^k*(k!)^2)) \\ Michel Marcus, Apr 26 2020
(PARI) besseli(0, sqrt(2)) \\ Michel Marcus, Apr 26 2020
CROSSREFS
Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), this sequence (I(0,sqrt(2))), A070910 (I(0,2)).
Sequence in context: A029944 A362582 A197494 * A153415 A154010 A258750
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Apr 25 2020
STATUS
approved