login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362585
Triangle read by rows, T(n, k) = A000670(n) * binomial(n, k).
3
1, 1, 1, 3, 6, 3, 13, 39, 39, 13, 75, 300, 450, 300, 75, 541, 2705, 5410, 5410, 2705, 541, 4683, 28098, 70245, 93660, 70245, 28098, 4683, 47293, 331051, 993153, 1655255, 1655255, 993153, 331051, 47293, 545835, 4366680, 15283380, 30566760, 38208450, 30566760, 15283380, 4366680, 545835
OFFSET
0,4
EXAMPLE
[0] 1;
[1] 1, 1;
[2] 3, 6, 3;
[3] 13, 39, 39, 13;
[4] 75, 300, 450, 300, 75;
[5] 541, 2705, 5410, 5410, 2705, 541;
[6] 4683, 28098, 70245, 93660, 70245, 28098, 4683;
PROG
(SageMath)
def TransOrdPart(m, n) -> list[int]:
@cached_function
def P(m: int, n: int):
R = PolynomialRing(ZZ, "x")
if n == 0: return R(1)
return R(sum(binomial(m * n, m * k) * P(m, n - k) * x
for k in range(1, n + 1)))
T = P(m, n)
def C(k) -> int:
return sum(T[j] * binomial(n, k) for j in range(n + 1))
return [C(k) for k in range(n+1)]
def A362585(n) -> list[int]: return TransOrdPart(1, n)
for n in range(6): print(A362585(n))
CROSSREFS
Family of triangles: A055372 (m=0, Pascal), this sequence (m=1, Fubini), A362586 (m=2, Joffe), A362849 (m=3, A278073).
Cf. A000670 (column 0 and main diagonal), A216794 (row sums).
Sequence in context: A205844 A205865 A376547 * A085881 A265480 A309084
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 26 2023
STATUS
approved