|
|
A216794
|
|
Number of set partitions of {1,2,...,n} with labeled blocks and a (possibly empty) subset of designated elements in each block.
|
|
13
|
|
|
1, 2, 12, 104, 1200, 17312, 299712, 6053504, 139733760, 3628677632, 104701504512, 3323151509504, 115063060869120, 4316023589937152, 174347763227738112, 7545919601962287104, 348366745238330081280, 17087957176042900815872, 887497598764802460352512
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: 1/(2 - exp(2*x)).
E.g.f.: 1 + 2*x/(G(0) - 2*x) where G(k) = 2*k+1 - x*2*(2*k+1)/(2*x + (2*k+2)/(1 + 2*x/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
E.g.f.: 1 + 2*x/( G(0) - 2*x ) where G(k) = 1 - 2*x/(1 + (1*k+1)/G(k+1)); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 02 2013
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+2)/( 1 - 4*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 8*x^2*(k+1)^2/( 8*x^2*(k+1)^2 - (1-2*x-6*x*k)*(1-8*x-6*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2013
a(n) = (-1)^(n+1)*(Li_{-n}(sqrt(2)) + Li_{-n}(-sqrt(2)))/4, where Li_n(x) is the polylogarithm.
Li_{-n}(sqrt(2)) = (-1)^(n+1)*(2*a(n) + A080253(n)*sqrt(2)).
(End)
a(n) = 2^(n-1)*(Li_{-n}(1/2) + 0^n) with 0^0=1. - Peter Luschny, Nov 03 2015
|
|
MAPLE
|
a := n -> 2^(n-1)*(polylog(-n, 1/2)+`if`(n=0, 1, 0)):
seq(round(evalf(a(n), 32)), n=0..18); # Peter Luschny, Nov 03 2015
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*2^j, j=1..n))
end:
|
|
MATHEMATICA
|
nn=25; a=Exp[2x]-1; Range[0, nn]!CoefficientList[Series[1/(1-a), {x, 0, nn}], x]
Round@Table[(-1)^(n+1) (PolyLog[-n, Sqrt[2]] + PolyLog[-n, -Sqrt[2]])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
|
|
PROG
|
(Sage)
return 2^n*add(add((-1)^(j-i)*binomial(j, i)*i^n for i in range(n+1)) for j in range(n+1))
(PARI) a(n) = 2^(n-1)*(polylog(-n, 1/2) + 0^n); \\ Michel Marcus, May 30 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|