login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104533
E.g.f.: exp(2x/(1-2x)).
1
1, 2, 12, 104, 1168, 16032, 259264, 4817024, 100954368, 2353435136, 60355677184, 1687701792768, 51077784506368, 1662782678736896, 57917727119818752, 2148722382829027328, 84569896954751942656, 3518839711497761980416, 154306731918073225019392
OFFSET
0,2
COMMENTS
Number of hierarchical orderings for n labeled elements (see A075729) when there are two kinds A and B of elements.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..398 (terms 0..150 from Alois P. Heinz)
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
FORMULA
a(n) = 2^n*A000262(n) = 2^n*n!*Sum_{k=0..n} C(n-1,k)/(k+1)!. - Paul Barry, Apr 28 2007
With p(n) = the number of integer partitions of n, d(i) = the number of different parts of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, sum_{i=1}^{p(n)} = sum over i and prod_{j=1}^{d(i)} = product over j one has: a(n)=sum_{i=1}^{p(n)} n!/(prod_{j=1}^{d(i)} m(i, j)!) * 2^(n)
E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - 2*x/(2*x + (k+1)*(1-2*x)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 09 2013
E.g.f.: E(0) - 1, where E(k) = 2 + 2*x/((2*k+1)*(1-2*x) - 2*x/E(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Dec 31 2013
EXAMPLE
Let "a_i" and "b_j" be elements situated in the classes A and B with _i and _j as labels. Let : denote a separator among levels (ranks). Let | denote a separator among groups. E.g., a_1:b_2|b_1 is a hierarchy composed of two groups which contain three elements in total.
a(2) = 12 from b_2:b_1, b_2:a_1, b_2|b_1, a_1:a_2, b_2:a_1, a_1|a_2, a_1:b_2, a_2:a_1, b_1:a_2, a_2:b_1, b_1|a_2, b_2:b_1.
MAPLE
SetSeqUnnL := [T, {T=Set(S, card>=1), S=Sequence(U, card>=1), U=Union(a, b), a=Atom, b=Atom}, labeled]; seq(count(SetSeqUnnL, size=j), j=1..20);
A104533 := proc(n::integer) local i, j, prttnlst, prttn, liste, ZahlVerschiedenerTeile, H, Mltplztt; Mltplztt:=vector[1000]; prttnlst:=partition(n); H := 0; for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; liste := convert(prttn, multiset); ZahlVerschiedenerTeile := nops(liste); for j from 1 to ZahlVerschiedenerTeile do Mltplztt[j] := op(2, op(j, liste)); od; H := H + (n!/mul(Mltplztt[j]!, j=1..ZahlVerschiedenerTeile)) * 2^n; od; print(n, H); end proc;
MATHEMATICA
CoefficientList[Exp[2 x/(1 - 2 x)] + O[x]^21, x]*Range[0, 20]!
(* or: *)
a[0] = 1; a[n_] := 2^n*n!*Hypergeometric1F1[n + 1, 2, 1]/E;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 10 2017 *)
CROSSREFS
Equals 2^n * A000262(n).
Sequence in context: A301833 A320899 A194951 * A216794 A218300 A125031
KEYWORD
nonn
AUTHOR
Thomas Wieder, Mar 13 2005
EXTENSIONS
Edited by N. J. A. Sloane, May 06 2008, at the suggestion of Joerg Arndt
STATUS
approved