login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301833
G.f. A(x) satisfies: A(x) = 1/(1 - 2*x*A(x)/(1 - 2*x*A(x)/(1 - 4*x*A(x)/(1 - 4*x*A(x)/(1 - 6*x*A(x)/(1 - 6*x*A(x)/(1 - ...))))))), a continued fraction.
0
1, 2, 12, 104, 1104, 13472, 183488, 2749056, 44996864, 802443776, 15579089920, 329170937856, 7562372632576, 188526816632832, 5083702487990272, 147676990509580288, 4600624321049722880, 153012055369679241216, 5409813656756850262016, 202534832564335070937088, 8001606648308588124045312
OFFSET
0,2
FORMULA
a(n) = [x^n] (Sum_{k>=0} A000165(k)*x^k)^(n+1)/(n + 1).
a(n) ~ sqrt(Pi) * (2*n)^(n + 1/2) / exp(n-1). - Vaclav Kotesovec, Nov 05 2021
EXAMPLE
G.f. A(x) = 1 + 2*x + 12*x^2 + 104*x^3 + 1104*x^4 + 13472*x^5 + 183488*x^6 + 2749056*x^7 + 44996864*x^8 + ...
log(A(x)) = 2*x + 20*x^2/2 + 248*x^3/3 + 3472*x^4/4 + 53152*x^5/5 + 878144*x^6/6 + ... + A293471(n)*x^n/n + ...
MATHEMATICA
Table[SeriesCoefficient[(1 + Sum[(2*k)!!*x^k, {k, 1, n}])^(n+1)/(n+1), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 27 2018
STATUS
approved