login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = 1/(1 - 2*x*A(x)/(1 - 2*x*A(x)/(1 - 4*x*A(x)/(1 - 4*x*A(x)/(1 - 6*x*A(x)/(1 - 6*x*A(x)/(1 - ...))))))), a continued fraction.
0

%I #7 Nov 05 2021 05:41:08

%S 1,2,12,104,1104,13472,183488,2749056,44996864,802443776,15579089920,

%T 329170937856,7562372632576,188526816632832,5083702487990272,

%U 147676990509580288,4600624321049722880,153012055369679241216,5409813656756850262016,202534832564335070937088,8001606648308588124045312

%N G.f. A(x) satisfies: A(x) = 1/(1 - 2*x*A(x)/(1 - 2*x*A(x)/(1 - 4*x*A(x)/(1 - 4*x*A(x)/(1 - 6*x*A(x)/(1 - 6*x*A(x)/(1 - ...))))))), a continued fraction.

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%F a(n) = [x^n] (Sum_{k>=0} A000165(k)*x^k)^(n+1)/(n + 1).

%F a(n) ~ sqrt(Pi) * (2*n)^(n + 1/2) / exp(n-1). - _Vaclav Kotesovec_, Nov 05 2021

%e G.f. A(x) = 1 + 2*x + 12*x^2 + 104*x^3 + 1104*x^4 + 13472*x^5 + 183488*x^6 + 2749056*x^7 + 44996864*x^8 + ...

%e log(A(x)) = 2*x + 20*x^2/2 + 248*x^3/3 + 3472*x^4/4 + 53152*x^5/5 + 878144*x^6/6 + ... + A293471(n)*x^n/n + ...

%t Table[SeriesCoefficient[(1 + Sum[(2*k)!!*x^k, {k, 1, n}])^(n+1)/(n+1), {x, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 05 2021 *)

%Y Cf. A000165, A088368, A293471, A301363.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Mar 27 2018