login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034899
Euler transform of powers of 2 [ 2,4,8,16,... ].
20
1, 2, 7, 20, 59, 162, 449, 1200, 3194, 8348, 21646, 55480, 141152, 356056, 892284, 2221208, 5497945, 13533858, 33151571, 80826748, 196219393, 474425518, 1142758067, 2742784304, 6561052331, 15645062126, 37194451937, 88174252924, 208463595471, 491585775018
OFFSET
0,2
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..3150 (first 900 terms from Alois P. Heinz)
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
G. S. Venkatesh and Kurusch Ebrahimi-Fard, A Formal Power Series Approach to Multiplicative Dynamic Feedback, arXiv:2301.04949 [math.OC], 2023.
FORMULA
G.f.: 1/Product_{n>0} (1-x^n)^(2^n). - Thomas Wieder, Mar 06 2005
a(n) ~ c^2 * 2^(n-1) * exp(2*sqrt(n) - 1/2) / (sqrt(Pi) * n^(3/4)), where c = A247003 = exp( Sum_{k>=2} 1/(k*(2^k-2)) ) = 1.3976490050836502... . - Vaclav Kotesovec, Mar 09 2015
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - 2*x^k))). - Ilya Gutkovskiy, Nov 09 2018
EXAMPLE
From Geoffrey Critzer, Mar 07 2012: (Start)
Per comment in A102866, a(n) is also the number of multisets of binary words of total length n.
a(2) = 7 because the multisets are {a,a}, {b,b}, {a,b}, {aa}, {ab}, {ba}, {bb};
a(3) = 20 because the multisets are {a,a,a}, {b,b,b}, {a,a,b}, {a,b,b}, {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb};
where the words within each multiset are separated by commas. (End)
MAPLE
series(1/product((1-x^(n))^(2^(n)), n=1..20), x=0, 12); (Wieder)
# second Maple program:
with(numtheory):
a:= proc(n) option remember;
`if`(n=0, 1, add(add(d*2^d, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 02 2011
MATHEMATICA
nn = 20; p = Product[1/(1 - x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
PROG
(PARI) m=50; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^(2^k))) \\ G. C. Greubel, Nov 09 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(2^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018 ~
CROSSREFS
Cf. A034691, the Euler transform of 1, 2, 4, 8, 16, 32, 64, ...
Column k=2 of A144074.
Row sums of A055375 and of A209406.
Sequence in context: A094982 A292400 A007460 * A026124 A026153 A025180
KEYWORD
nonn
EXTENSIONS
More terms from Thomas Wieder, Mar 06 2005
STATUS
approved