login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034902
a(i) is a square mod a(j), i <> j; a(n) prime; a(1) = 2.
2
2, 7, 113, 233, 337, 2129, 3833, 8737, 19553, 46337, 72689, 103681, 361649, 449689, 477017, 668273, 3095353, 7212577, 13188281, 26340857, 46012633, 246116833, 330177017, 354681097, 1014496289, 1315295809, 2269762961, 4651240801, 14947292497
OFFSET
1,1
MATHEMATICA
a[1] = 2; squareModQ[p_, q_] := (For[k=0, k <= q, k++, If[Mod[p-k^2, q] == 0, Return[True]]]; Return[False]); a[n_] := a[n] = For[r=NextPrime[a[n-1]], True, r=NextPrime[r], If[And @@ (squareModQ[r, #] && squareModQ[#, r] & /@ Array[a, n-1]), Return[r]]]; Table[Print[a[n]]; a[n], {n, 1, 10}] (* Jean-François Alcover, Dec 10 2014 *)
PROG
(PARI) isok(newp, v, n) = {for (k=1, n, if (!issquare(Mod(newp, v[k])) || !issquare(Mod(v[k], newp)), return (0)); ); return (1); }
lista(nn) = {my(v=vector(nn), lastp=2); v[1] = lastp; for (n=2, nn, my(newp = nextprime(lastp+1)); while (! isok(newp, v, n-1), newp = nextprime(newp+1)); v[n] = newp; lastp = newp; ); v; } \\ Michel Marcus, Sep 25 2020
CROSSREFS
Sequence in context: A264999 A326940 A326964 * A101429 A270749 A206151
KEYWORD
nonn,nice,more
EXTENSIONS
a(24)-a(29) from Sean A. Irvine, Sep 20 2020
Name edited by Michel Marcus, Sep 24 2020
STATUS
approved