login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209406
Triangular array read by rows: T(n,k) is the number of multisets of exactly k nonempty binary words with a total of n letters.
10
2, 4, 3, 8, 8, 4, 16, 26, 12, 5, 32, 64, 44, 16, 6, 64, 164, 132, 62, 20, 7, 128, 384, 376, 200, 80, 24, 8, 256, 904, 1008, 623, 268, 98, 28, 9, 512, 2048, 2632, 1792, 870, 336, 116, 32, 10, 1024, 4624, 6624, 5040, 2632, 1117, 404, 134, 36, 11
OFFSET
1,1
COMMENTS
Equivalently, T(n,k) is the number of partitions of the integer n with two types of 1's, four types of 2's, ..., 2^i types of i's...; having exactly k summands (of any type).
Row sums = A034899.
FORMULA
O.g.f.: Product_{i>=1} 1/(1-y*x^i)^(2^i).
EXAMPLE
Triangle T(n,k) begins:
2;
4, 3;
8, 8, 4;
16, 26, 12, 5;
32, 64, 44, 16, 6;
64, 164, 132, 62, 20, 7;
128, 384, 376, 200, 80, 24, 8;
256, 904, 1008, 623, 268, 98, 28, 9;
512, 2048, 2632, 1792, 870, 336, 116, 32, 10;
...
MAPLE
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
binomial(2^i+j-1, j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Apr 13 2017
MATHEMATICA
nn = 10; p[x_, y_] := Product[1/(1 - y x^i)^(2^i), {i, 1, nn}]; f[list_] := Select[lst, # > 0 &]; Map[f, Drop[CoefficientList[Series[p[x, y], {x, 0, nn}], {x, y}], 1]] // Flatten
CROSSREFS
T(2n,n) gives A359962.
Sequence in context: A318993 A355482 A188843 * A188706 A304408 A048767
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Mar 08 2012
STATUS
approved