login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209408 Number of subsets of {1,...,n} containing {a,a+4} for some a. 3
0, 0, 0, 0, 0, 8, 28, 74, 175, 377, 799, 1673, 3471, 7192, 14784, 30208, 61440, 124416, 251328, 506712, 1020015, 2051015, 4119775, 8268215, 16582735, 33239558, 66599068, 133392344, 267099120, 534709192, 1070244924, 2141826898, 4285816671, 8575127217 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
For n=5, subsets containing {a,a+4} occur only when a=1. There are 2^3 subsets including {1,5}, thus a(5) = 8.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-1,-2,-2,6,-2,-4,2,-6,2,4,1,-3, 1,2).
FORMULA
a(n) = 2^n - A208741(n-1).
a(n) = 2^n - Product_{i=0..3} Fibonacci(floor((n + i)/4) + 2).
a(n) = 3*a(n-1) - a(n-2) -2*a(n-3) -2*a(n-4) + 6*a(n-5) - 2*a(n-6) - 4*a(n-7) + 2*a(n-8) - 6*a(n-9) + 2*a(n-10) + 4*a(n-11) + a(n-12) - 3*a(n-13) + a(n-14) + 2*a(n-15).
G.f.: x^5*(8 + 4 x - 2 x^2 - 3 x^3 - 2 x^4 - x^5 - x^6 - x^7 - 2 x^8 - x^9) / ((1 - x) (1 + x) (1 - 2 x) (1 + x^2) (1 - x - x^2) (1 + 3 x^4 + x^8)).
MATHEMATICA
Table[2^n - Product[Fibonacci[Floor[(n + i)/4] + 2], {i, 0, 3}], {n, 0, 30}]
LinearRecurrence[{3, -1, -2, -2, 6, -2, -4, 2, -6, 2, 4, 1, -3, 1, 2}, {0, 0, 0, 0, 0, 8, 28, 74, 175, 377, 799, 1673, 3471, 7192, 14784}, 30]
PROG
(Python)
#Returns the actual list of valid subsets
def contains10001(n):
.patterns=list()
.for start in range (1, n-3):
..s=set()
..for i in range(5):
...if (1, 0, 0, 0, 1)[i]:
....s.add(start+i)
..patterns.append(s)
.s=list()
.for i in range(2, n+1):
..for temptuple in comb(range(1, n+1), i):
...tempset=set(temptuple)
...for sub in patterns:
....if sub <= tempset:
.....s.append(tempset)
.....break
.return s
#Counts all such sets
def countcontains10001(n):
.return len(contains10001(n))
#From recurrence
def a(n, adict={0:0, 1:0, 2:0, 3:0, 4:0, 5:8, 6:28, 7:74, 8:175, 9:377, 10:799, 11:1673, 12:3471, 13:7192, 14:14784}):
.if n in adict:
..return adict[n]
.adict[n]=3*a(n-1)-a(n-2)-2*a(n-3)-2*a(n-4)+6*a(n-5)-2*a(n-6)-4*a(n-7)+2*a(n-8)-6*a(n-9)+2*a(n-10)+4*a(n-11)+a(n-12)-3*a(n-13)+a(n-14)+2*a(n-15)
.return adict[n]
(PARI) for(n=0, 20, print1(2^n - fibonacci(floor(n/4) + 2)*fibonacci( floor((n + 1)/4) + 2)*fibonacci(floor((n + 2)/4) + 2)*fibonacci( floor((n + 3)/4) + 2), ", ")) \\ G. C. Greubel, Jan 03 2018
(Magma) [2^n - Fibonacci(Floor(n/4) + 2)*Fibonacci(Floor((n + 1)/4) + 2)*Fibonacci(Floor((n + 2)/4) + 2)*Fibonacci(Floor((n + 3)/4) + 2): n in [0..30]]; // G. C. Greubel, Jan 03 2018
CROSSREFS
Sequence in context: A105636 A102665 A212565 * A316214 A134638 A293289
KEYWORD
nonn,easy
AUTHOR
David Nacin, Mar 08 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 18:06 EST 2023. Contains 367563 sequences. (Running on oeis4.)