The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209408 Number of subsets of {1,...,n} containing {a,a+4} for some a. 3
 0, 0, 0, 0, 0, 8, 28, 74, 175, 377, 799, 1673, 3471, 7192, 14784, 30208, 61440, 124416, 251328, 506712, 1020015, 2051015, 4119775, 8268215, 16582735, 33239558, 66599068, 133392344, 267099120, 534709192, 1070244924, 2141826898, 4285816671, 8575127217 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS For n=5, subsets containing {a,a+4} occur only when a=1. There are 2^3 subsets including {1,5}, thus a(5) = 8. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-1,-2,-2,6,-2,-4,2,-6,2,4,1,-3, 1,2). FORMULA a(n) = 2^n - A208741(n-1). a(n) = 2^n - Product_{i=0..3} Fibonacci(floor((n + i)/4) + 2). a(n) = 3*a(n-1) - a(n-2) -2*a(n-3) -2*a(n-4) + 6*a(n-5) - 2*a(n-6) - 4*a(n-7) + 2*a(n-8) - 6*a(n-9) + 2*a(n-10) + 4*a(n-11) + a(n-12) - 3*a(n-13) + a(n-14) + 2*a(n-15). G.f.: x^5*(8 + 4 x - 2 x^2 - 3 x^3 - 2 x^4 - x^5 - x^6 - x^7 - 2 x^8 - x^9) / ((1 - x) (1 + x) (1 - 2 x) (1 + x^2) (1 - x - x^2) (1 + 3 x^4 + x^8)). MATHEMATICA Table[2^n - Product[Fibonacci[Floor[(n + i)/4] + 2], {i, 0, 3}], {n, 0, 30}] LinearRecurrence[{3, -1, -2, -2, 6, -2, -4, 2, -6, 2, 4, 1, -3, 1, 2}, {0, 0, 0, 0, 0, 8, 28, 74, 175, 377, 799, 1673, 3471, 7192, 14784}, 30] PROG (Python) #Returns the actual list of valid subsets def contains10001(n): .patterns=list() .for start in range (1, n-3): ..s=set() ..for i in range(5): ...if (1, 0, 0, 0, 1)[i]: ....s.add(start+i) ..patterns.append(s) .s=list() .for i in range(2, n+1): ..for temptuple in comb(range(1, n+1), i): ...tempset=set(temptuple) ...for sub in patterns: ....if sub <= tempset: .....s.append(tempset) .....break .return s #Counts all such sets def countcontains10001(n): .return len(contains10001(n)) #From recurrence def a(n, adict={0:0, 1:0, 2:0, 3:0, 4:0, 5:8, 6:28, 7:74, 8:175, 9:377, 10:799, 11:1673, 12:3471, 13:7192, 14:14784}): .if n in adict: ..return adict[n] .adict[n]=3*a(n-1)-a(n-2)-2*a(n-3)-2*a(n-4)+6*a(n-5)-2*a(n-6)-4*a(n-7)+2*a(n-8)-6*a(n-9)+2*a(n-10)+4*a(n-11)+a(n-12)-3*a(n-13)+a(n-14)+2*a(n-15) .return adict[n] (PARI) for(n=0, 20, print1(2^n - fibonacci(floor(n/4) + 2)*fibonacci( floor((n + 1)/4) + 2)*fibonacci(floor((n + 2)/4) + 2)*fibonacci( floor((n + 3)/4) + 2), ", ")) \\ G. C. Greubel, Jan 03 2018 (Magma) [2^n - Fibonacci(Floor(n/4) + 2)*Fibonacci(Floor((n + 1)/4) + 2)*Fibonacci(Floor((n + 2)/4) + 2)*Fibonacci(Floor((n + 3)/4) + 2): n in [0..30]]; // G. C. Greubel, Jan 03 2018 CROSSREFS Cf. A031923, A209409, A209410. Sequence in context: A105636 A102665 A212565 * A316214 A134638 A293289 Adjacent sequences: A209405 A209406 A209407 * A209409 A209410 A209411 KEYWORD nonn,easy AUTHOR David Nacin, Mar 08 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 18:06 EST 2023. Contains 367563 sequences. (Running on oeis4.)