login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209409
Number of subsets of {1,...,n} containing {a,a+2,a+4} for some a.
3
0, 0, 0, 0, 0, 4, 15, 37, 87, 200, 448, 992, 2160, 4628, 9823, 20699, 43335, 90246, 187068, 386192, 794560, 1629944, 3334975, 6808073, 13870191, 28207552, 57274368, 116129280, 235165632, 475678200, 961190943, 1940470231, 3914210127, 7889613022, 15891777084
OFFSET
0,6
COMMENTS
Also, the number of bitstrings of length n containing 10101,11101,10111 or 11111.
FORMULA
A(n) = 2^n - A209410(n)
a(n) = 2^n - t[floor(n/2)+2]*t[floor((n+1)/2)+2] where t(n) is the n-th tribonacci number.
a(n) = 3*a(n-1) - 2*a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) + 2*a(n-10).
G.f.: x^5*(4 + 3*x - 2*x^3 - x^4)/((1 - 2*x) (1 - x - x^2 - x^3) (1 + x^2 + x^4 - x^6)).
EXAMPLE
For n=5, subsets containing {a,a+2,a+4} occur only when a=1. There are 2^2 subsets including {1,3,5}, thus a(5) = 4.
MATHEMATICA
LinearRecurrence[{3, -2, 2, -4, 2, -2, -4, -1, 1, 2}, {0, 0, 0, 0, 0, 4, 15, 37, 87, 200}, 40]
PROG
(Python)
#Returns the actual list of valid subsets
def containscode(n, bitstring=(1, 0, 1, 0, 1)):
.patterns=list()
.for start in range (1, n-len(bitstring)+2):
..s=set()
..for i in range(len(bitstring)):
...if bitstring[i]:
....s.add(start+i)
..patterns.append(s)
.s=list()
.for i in range(sum(bitstring), n+1):
..for temptuple in comb(range(1, n+1), i):
...tempset=set(temptuple)
...for sub in patterns:
....if sub <= tempset:
.....s.append(tempset)
.....break
.return s
#Counts all such sets
def countcontainscode(n, bitstring=(1, 0, 1, 0, 1)):
.return len(containscode(n))
(Python)
#From recurrence
def a(n, adict={0:0, 1:0, 2:0, 3:0, 4:0, 5:4, 6:15, 7:37, 8:87, 9:200}):
.if n in adict:
..return adict[n]
.adict[n]=3*a(n-1) - 2*a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) + 2*a(n-10)
.return adict[n]
(PARI) x='x+O('x^30); concat([0, 0, 0, 0, 0], Vec(x^5*(4+3*x-2*x^3-x^4)/((1- 2*x)*(1-x-x^2-x^3)*(1+x^2+x^4-x^6)))) \\ G. C. Greubel, Jan 03 2018
CROSSREFS
Sequence in context: A033813 A296295 A296268 * A241302 A112666 A014629
KEYWORD
nonn,easy
AUTHOR
David Nacin, Mar 08 2012
STATUS
approved