login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290222
Multiset transform of A011782, powers of 2: 1, 2, 4, 8, 16, ...
5
1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 8, 7, 2, 1, 0, 16, 16, 7, 2, 1, 0, 32, 42, 20, 7, 2, 1, 0, 64, 96, 54, 20, 7, 2, 1, 0, 128, 228, 140, 59, 20, 7, 2, 1, 0, 256, 512, 360, 156, 59, 20, 7, 2, 1, 0, 512, 1160, 888, 422, 162, 59, 20, 7, 2, 1, 0, 1024, 2560, 2168, 1088, 442, 162, 59, 20, 7, 2, 1
OFFSET
0,5
COMMENTS
T(n,k) is the number of multisets of exactly k binary words with a total of n letters and each word beginning with 1. T(4,2) = 7: {1,100}, {1,101}, {1,110}, {1,111}, {10,10}, {10,11}, {11,11}. - Alois P. Heinz, Sep 18 2017
FORMULA
G.f.: 1 / Product_{j>=1} (1-y*x^j)^(2^(j-1)). - Alois P. Heinz, Sep 18 2017
EXAMPLE
The triangle starts:
1;
0 1;
0 2 1;
0 4 2 1;
0 8 7 2 1;
0 16 16 7 2 1;
0 32 42 20 7 2 1;
0 64 96 54 20 7 2 1;
0 128 228 140 59 20 7 2 1;
0 256 512 360 156 59 20 7 2 1;
0 512 1160 888 422 162 59 20 7 2 1;
0 1024 2560 2168 1088 442 162 59 20 7 2 1;
(...)
MAPLE
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(binomial(2^(i-1)+j-1, j)*
b(n-i*j, i-1, p-j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Sep 12 2017
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[Binomial[2^(i - 1) + j - 1, j] b[n - i j, i - 1, p - j], {j, 0, Min[n/i, p]}]]]];
T[n_, k_] := b[n, n, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
CROSSREFS
Cf. A034691 (row sums), A000007 (column k=0), A011782 (column k=1), A178945(n-1) (column k=2).
The reverse of the n-th row converges to A034899.
Sequence in context: A378014 A355756 A140649 * A327549 A293808 A327805
KEYWORD
nonn,tabl
AUTHOR
M. F. Hasler, Jul 24 2017
STATUS
approved