Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Dec 07 2019 08:15:02
%S 1,0,1,0,2,1,0,4,2,1,0,8,7,2,1,0,16,16,7,2,1,0,32,42,20,7,2,1,0,64,96,
%T 54,20,7,2,1,0,128,228,140,59,20,7,2,1,0,256,512,360,156,59,20,7,2,1,
%U 0,512,1160,888,422,162,59,20,7,2,1,0,1024,2560,2168,1088,442,162,59,20,7,2,1
%N Multiset transform of A011782, powers of 2: 1, 2, 4, 8, 16, ...
%C T(n,k) is the number of multisets of exactly k binary words with a total of n letters and each word beginning with 1. T(4,2) = 7: {1,100}, {1,101}, {1,110}, {1,111}, {10,10}, {10,11}, {11,11}. - _Alois P. Heinz_, Sep 18 2017
%H Alois P. Heinz, <a href="/A290222/b290222.txt">Rows n = 0..140, flattened</a>
%H <a href="/index/Mu#multiplicative_completely">Index entries for triangles generated by the Multiset Transformation</a>
%F G.f.: 1 / Product_{j>=1} (1-y*x^j)^(2^(j-1)). - _Alois P. Heinz_, Sep 18 2017
%e The triangle starts:
%e 1;
%e 0 1;
%e 0 2 1;
%e 0 4 2 1;
%e 0 8 7 2 1;
%e 0 16 16 7 2 1;
%e 0 32 42 20 7 2 1;
%e 0 64 96 54 20 7 2 1;
%e 0 128 228 140 59 20 7 2 1;
%e 0 256 512 360 156 59 20 7 2 1;
%e 0 512 1160 888 422 162 59 20 7 2 1;
%e 0 1024 2560 2168 1088 442 162 59 20 7 2 1;
%e (...)
%p b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
%p `if`(min(i, p)<1, 0, add(binomial(2^(i-1)+j-1, j)*
%p b(n-i*j, i-1, p-j), j=0..min(n/i, p)))))
%p end:
%p T:= (n, k)-> b(n$2, k):
%p seq(seq(T(n, k), k=0..n), n=0..14); # _Alois P. Heinz_, Sep 12 2017
%t b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[Binomial[2^(i - 1) + j - 1, j] b[n - i j, i - 1, p - j], {j, 0, Min[n/i, p]}]]]];
%t T[n_, k_] := b[n, n, k];
%t Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 07 2019, after _Alois P. Heinz_ *)
%Y Cf. A034691 (row sums), A000007 (column k=0), A011782 (column k=1), A178945(n-1) (column k=2).
%Y The reverse of the n-th row converges to A034899.
%Y Cf. A000079, A209406, A292506.
%K nonn,tabl
%O 0,5
%A _M. F. Hasler_, Jul 24 2017