login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290219
a(n) = n! * [x^n] exp(exp(x) - n*x - 1).
9
1, 0, 2, -13, 127, -1573, 23711, -421356, 8626668, -199971255, 5177291275, -148078588667, 4636966634653, -157786054331852, 5797411243015250, -228749440644895405, 9646951350227609155, -433035586385769361001, 20614401475233006857035, -1037331650810058231498688
OFFSET
0,3
COMMENTS
The n-th term of the n-th inverse binomial transform of A000110.
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) ~ (-1)^n * exp(exp(-1) - 1) * n^n. - Vaclav Kotesovec, Aug 04 2021
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
k*b(n-1, k)+ b(n-1, k+1))
end:
a:= n-> b(n, -n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
MATHEMATICA
Table[n! SeriesCoefficient[Exp[Exp[x] - n x - 1], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[Sum[(-n)^(n - k) Binomial[n, k] BellB[k] , {k, 0, n}], {n, 1, 19}]]
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 50);
A290219:= func< n | Coefficient(R!(Laplace( Exp(Exp(x)-n*x-1) )), n) >;
[A290219(n): n in [0..30]]; // G. C. Greubel, Jun 12 2024
(SageMath) [factorial(n)*( exp(exp(x) -n*x -1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024
CROSSREFS
Main diagonal of A361781.
Sequence in context: A071362 A108471 A036078 * A057065 A259611 A351299
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Oct 06 2017
STATUS
approved