Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jun 12 2024 21:05:40
%S 1,0,2,-13,127,-1573,23711,-421356,8626668,-199971255,5177291275,
%T -148078588667,4636966634653,-157786054331852,5797411243015250,
%U -228749440644895405,9646951350227609155,-433035586385769361001,20614401475233006857035,-1037331650810058231498688
%N a(n) = n! * [x^n] exp(exp(x) - n*x - 1).
%C The n-th term of the n-th inverse binomial transform of A000110.
%H Seiichi Manyama, <a href="/A290219/b290219.txt">Table of n, a(n) for n = 0..386</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F a(n) ~ (-1)^n * exp(exp(-1) - 1) * n^n. - _Vaclav Kotesovec_, Aug 04 2021
%p b:= proc(n, k) option remember; `if`(n=0, 1,
%p k*b(n-1, k)+ b(n-1, k+1))
%p end:
%p a:= n-> b(n, -n):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 04 2021
%t Table[n! SeriesCoefficient[Exp[Exp[x] - n x - 1], {x, 0, n}], {n, 0, 19}]
%t Join[{1}, Table[Sum[(-n)^(n - k) Binomial[n, k] BellB[k] , {k, 0, n}], {n, 1, 19}]]
%o (Magma)
%o R<x>:=PowerSeriesRing(Rationals(), 50);
%o A290219:= func< n | Coefficient(R!(Laplace( Exp(Exp(x)-n*x-1) )), n) >;
%o [A290219(n): n in [0..30]]; // _G. C. Greubel_, Jun 12 2024
%o (SageMath) [factorial(n)*( exp(exp(x) -n*x -1) ).series(x,n+1).list()[n] for n in (0..30)] # _G. C. Greubel_, Jun 12 2024
%Y Cf. A000110, A000296, A126617, A134980, A346738, A346739, A346740.
%Y Main diagonal of A361781.
%K sign
%O 0,3
%A _Ilya Gutkovskiy_, Oct 06 2017