login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216795
a(n) = sum_{k=0..n} binomial(n,k)^4 * 3^k.
1
1, 4, 58, 1000, 19426, 412744, 9195796, 212836432, 5062716850, 123033947464, 3041489363188, 76243484446672, 1933564156575364, 49518970223489680, 1278877982692134568, 33269141292429734560, 870987510534775369810, 22930499187530338390600, 606700679139764282611540
OFFSET
0,2
FORMULA
Recurrence: -(x-1)^4*(n+1)^3*(n+2)*(16*(4*x^2 + 17*x + 4)*n^4 + 184*(4*x^2 + 17*x + 4)*n^3 + (3137*x^2 + 13351*x + 3137)*n^2 + (5867*x^2 + 25051*x + 5867)*n + 4061*x^2 + 17438*x + 4061)*a(n) + (n+2)*(64*(4*x^5 + 141*x^4 + 655*x^3 + 655*x^2 + 141*x + 4)*n^7 + 1024*(4*x^5 + 141*x^4 + 655*x^3 + 655*x^2 + 141*x + 4)*n^6 + 4*(6857*x^5 + 242368*x^4 + 1126775*x^3 + 1126775*x^2 + 242368*x + 6857)*n^5 + 8*(12439*x^5 + 442336*x^4 + 2059985*x^3 + 2059985*x^2 + 442336*x + 12439)*n^4 + (211031*x^5 + 7579744*x^4 + 35400065*x^3 + 35400065*x^2 + 7579744*x + 211031)*n^3 + (261344*x^5 + 9524206*x^4 + 44667470*x^3 + 44667470*x^2 + 9524206*x + 261344)*n^2 + (174888*x^5 + 6498997*x^4 + 30655175*x^3 + 30655175*x^2 + 6498997*x + 174888)*n + 15*(3251*x^5 + 123835*x^4 + 588594*x^3 + 588594*x^2 + 123835*x + 3251))*a(n+1) -(32*(12*x^4-197*x^3-1030*x^2-197*x + 12)*n^8 + 624*(12*x^4-197*x^3-1030*x^2-197*x + 12)*n^7 + 10*(6295*x^4-103673*x^3-542004*x^2-103673*x + 6295)*n^6 + 4*(74418*x^4-1233343*x^3-6448430*x^2-1233343*x + 74418)*n^5 + (864893*x^4-14467663*x^3-75685660*x^2-14467663*x + 864893)*n^4 + 20*(78938*x^4-1336491*x^3-7002327*x^2-1336491*x + 78938)*n^3 + (1764932*x^4-30321697*x^3-159367410*x^2-30321697*x + 1764932)*n^2 + (1102551*x^4-19262286*x^3-101826010*x^2-19262286*x + 1102551)*n + 10*(29405*x^4-523232*x^3-2793306*x^2-523232*x + 29405))*a(n+2) + (n+3)*(64*(4*x^3 + 21*x^2 + 21*x + 4)*n^7 + 1152*(4*x^3 + 21*x^2 + 21*x + 4)*n^6 + 12*(2899*x^3 + 15226*x^2 + 15226*x + 2899)*n^5 + 4*(35609*x^3 + 187226*x^2 + 187226*x + 35609)*n^4 + (340693*x^3 + 1795162*x^2 + 1795162*x + 340693)*n^3 + (474743*x^3 + 2511132*x^2 + 2511132*x + 474743)*n^2 + (355831*x^3 + 1894439*x^2 + 1894439*x + 355831)*n + 10*(11039*x^3 + 59401*x^2 + 59401*x + 11039))*a(n+3) -(n+3)*(n+4)^3*(16*(4*x^2 + 17*x + 4)*n^4 + 120*(4*x^2 + 17*x + 4)*n^3 + (1313*x^2 + 5599*x + 1313)*n^2 + 15*(103*x^2 + 443*x + 103)*n + 659*x^2 + 2882*x + 659)*a(n+4) = 0, this is case x=3.
a(n) ~ (1+3^(1/4))^3/(4*sqrt(2)*3^(3/8)*Pi^(3/2)) * (1+3^(1/4))^(4*n)/n^(3/2). - Vaclav Kotesovec, Sep 19 2012
Generally, Sum_{k=0..n} binomial(n,k)^p*x^k is asymptotic a(n) ~ (1+x^(1/p))^(p*n+p-1)/sqrt((2*pi*n)^(p-1)*p*x^(1-1/p)). This is case p=4, x=3. - Vaclav Kotesovec, Sep 19 2012
MATHEMATICA
Table[Sum[Binomial[n, k]^4*3^k, {k, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A155668 A240430 A334991 * A216352 A295406 A375442
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 16 2012
EXTENSIONS
Minor edits by Vaclav Kotesovec, Mar 31 2014
STATUS
approved