|
|
A334991
|
|
a(n) = 4^n + 3 * 18^n.
|
|
0
|
|
|
4, 58, 988, 17560, 315184, 5669728, 102040768, 1836676480, 33059947264, 595078133248, 10711402728448, 192805234432000, 3470494161055744, 62468894664122368, 1124440103014678528, 20239921850506117120, 364318593294077722624, 6557734679233269465088, 118039224225958332203008
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
This sequence is a variation of the sequence A333385, variation proposed by Tony Gardiner in his book in reference.
Proposition: a(n) is a perfect square iff n = 0; in this case, a(0) = 4.
|
|
REFERENCES
|
A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, page 115 (1991).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 22*a(n-1) - 72*a(n-2) for n>1.
|
|
EXAMPLE
|
a(4) = 4^4 + 3 * 18^4 = 315184 = 2^4 * 19699 is not a perfect square.
|
|
MAPLE
|
S:=seq(4^n+3*18^n, n=0..20);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|