login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sum_{k=0..n} binomial(n,k)^4 * 3^k.
1

%I #18 Jul 11 2020 12:34:07

%S 1,4,58,1000,19426,412744,9195796,212836432,5062716850,123033947464,

%T 3041489363188,76243484446672,1933564156575364,49518970223489680,

%U 1278877982692134568,33269141292429734560,870987510534775369810,22930499187530338390600,606700679139764282611540

%N a(n) = sum_{k=0..n} binomial(n,k)^4 * 3^k.

%H Vincenzo Librandi, <a href="/A216795/b216795.txt">Table of n, a(n) for n = 0..200</a>

%H V. Kotesovec, <a href="http://www.kotesovec.cz/math_articles/kotesovec_binomial_asymptotics.pdf">Asymptotic of a sums of powers of binomial coefficients * x^k</a>, 2012

%F Recurrence: -(x-1)^4*(n+1)^3*(n+2)*(16*(4*x^2 + 17*x + 4)*n^4 + 184*(4*x^2 + 17*x + 4)*n^3 + (3137*x^2 + 13351*x + 3137)*n^2 + (5867*x^2 + 25051*x + 5867)*n + 4061*x^2 + 17438*x + 4061)*a(n) + (n+2)*(64*(4*x^5 + 141*x^4 + 655*x^3 + 655*x^2 + 141*x + 4)*n^7 + 1024*(4*x^5 + 141*x^4 + 655*x^3 + 655*x^2 + 141*x + 4)*n^6 + 4*(6857*x^5 + 242368*x^4 + 1126775*x^3 + 1126775*x^2 + 242368*x + 6857)*n^5 + 8*(12439*x^5 + 442336*x^4 + 2059985*x^3 + 2059985*x^2 + 442336*x + 12439)*n^4 + (211031*x^5 + 7579744*x^4 + 35400065*x^3 + 35400065*x^2 + 7579744*x + 211031)*n^3 + (261344*x^5 + 9524206*x^4 + 44667470*x^3 + 44667470*x^2 + 9524206*x + 261344)*n^2 + (174888*x^5 + 6498997*x^4 + 30655175*x^3 + 30655175*x^2 + 6498997*x + 174888)*n + 15*(3251*x^5 + 123835*x^4 + 588594*x^3 + 588594*x^2 + 123835*x + 3251))*a(n+1) -(32*(12*x^4-197*x^3-1030*x^2-197*x + 12)*n^8 + 624*(12*x^4-197*x^3-1030*x^2-197*x + 12)*n^7 + 10*(6295*x^4-103673*x^3-542004*x^2-103673*x + 6295)*n^6 + 4*(74418*x^4-1233343*x^3-6448430*x^2-1233343*x + 74418)*n^5 + (864893*x^4-14467663*x^3-75685660*x^2-14467663*x + 864893)*n^4 + 20*(78938*x^4-1336491*x^3-7002327*x^2-1336491*x + 78938)*n^3 + (1764932*x^4-30321697*x^3-159367410*x^2-30321697*x + 1764932)*n^2 + (1102551*x^4-19262286*x^3-101826010*x^2-19262286*x + 1102551)*n + 10*(29405*x^4-523232*x^3-2793306*x^2-523232*x + 29405))*a(n+2) + (n+3)*(64*(4*x^3 + 21*x^2 + 21*x + 4)*n^7 + 1152*(4*x^3 + 21*x^2 + 21*x + 4)*n^6 + 12*(2899*x^3 + 15226*x^2 + 15226*x + 2899)*n^5 + 4*(35609*x^3 + 187226*x^2 + 187226*x + 35609)*n^4 + (340693*x^3 + 1795162*x^2 + 1795162*x + 340693)*n^3 + (474743*x^3 + 2511132*x^2 + 2511132*x + 474743)*n^2 + (355831*x^3 + 1894439*x^2 + 1894439*x + 355831)*n + 10*(11039*x^3 + 59401*x^2 + 59401*x + 11039))*a(n+3) -(n+3)*(n+4)^3*(16*(4*x^2 + 17*x + 4)*n^4 + 120*(4*x^2 + 17*x + 4)*n^3 + (1313*x^2 + 5599*x + 1313)*n^2 + 15*(103*x^2 + 443*x + 103)*n + 659*x^2 + 2882*x + 659)*a(n+4) = 0, this is case x=3.

%F a(n) ~ (1+3^(1/4))^3/(4*sqrt(2)*3^(3/8)*Pi^(3/2)) * (1+3^(1/4))^(4*n)/n^(3/2). - _Vaclav Kotesovec_, Sep 19 2012

%F Generally, Sum_{k=0..n} binomial(n,k)^p*x^k is asymptotic a(n) ~ (1+x^(1/p))^(p*n+p-1)/sqrt((2*pi*n)^(p-1)*p*x^(1-1/p)). This is case p=4, x=3. - _Vaclav Kotesovec_, Sep 19 2012

%t Table[Sum[Binomial[n, k]^4*3^k, {k, 0, n}], {n, 0, 25}]

%Y Cf. A005260, A216696.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Sep 16 2012

%E Minor edits by _Vaclav Kotesovec_, Mar 31 2014