login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216696
a(n) = Sum_{k=0..n} binomial(n,k)^4 * 2^k.
4
1, 3, 37, 495, 7761, 131283, 2336629, 43174911, 819869185, 15906350403, 313905320037, 6281740700271, 127173173346129, 2599950664710675, 53601450936173877, 1113117091905581055, 23262762639358582785, 488890438209132473475, 10325711607889973605285, 219057502101780979753455
OFFSET
0,2
FORMULA
Recurrence: (864*n^8 + 14256*n^7 + 99843*n^6 + 386844*n^5 + 905129*n^4 + 1307419*n^3 + 1137462*n^2 + 545141*n + 110362)*a(n) - (673920*n^8 + 12130560*n^7 + 94006260*n^6 + 409620480*n^5 + 1097677875*n^4 + 1852470090*n^3 + 1922754750*n^2 + 1122222315*n + 281983230)*a(n+1) - (188352*n^8 + 3672864*n^7 + 30977310*n^6 + 147448176*n^5 + 432716089*n^4 + 800645440*n^3 + 910682766*n^2 + 581183533*n + 159056590)*a(n+2) - (10368*n^8 + 217728*n^7 + 1969236*n^6 + 10003440*n^5 + 31163253*n^4 + 60851106*n^3 + 72587550*n^2 + 48264909*n + 13672710)*a(n+3) + (864*n^8 + 19440*n^7 + 187539*n^6 + 1011492*n^5 + 3330104*n^4 + 6840009*n^3 + 8542572*n^2 + 5919152*n + 1739328)*a(n+4) = 0.
a(n) ~ (1+2^(1/4))^3/(4*2^(7/8)*Pi^(3/2)) * (1+2^(1/4))^(4*n)/n^(3/2). - Vaclav Kotesovec, Sep 19 2012
Generally, Sum_{k=0..n} binomial(n,k)^p*x^k is asymptotic a(n) ~ (1+x^(1/p))^(p*n+p-1)/sqrt((2*pi*n)^(p-1)*p*x^(1-1/p)). This is case p=4, x=2. - Vaclav Kotesovec, Sep 19 2012
MATHEMATICA
Table[Sum[Binomial[n, k]^4*2^k, {k, 0, n}], {n, 0, 25}]
CROSSREFS
Cf. A005260.
Sequence in context: A336242 A054596 A155667 * A362724 A333385 A331114
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 15 2012
EXTENSIONS
Minor edits by Vaclav Kotesovec, Mar 31 2014
STATUS
approved