OFFSET
1,2
FORMULA
a(n) = (n!)^2 * [x^n] Sum_{k>=1} (1 - BesselJ(0,2*x^(k/2))).
a(n) = (n!)^2 * [x^n] Sum_{k>=1} -(-x)^k / ((k!)^2 * (1 - x^k)).
MATHEMATICA
Table[(n!)^2 Sum[(-1)^(d + 1)/(d!)^2, {d, Divisors[n]}], {n, 1, 17}]
nmax = 17; CoefficientList[Series[Sum[(1 - BesselJ[0, 2 x^(k/2)]), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2 // Rest
PROG
(PARI) a(n) = n!^2*sumdiv(n, d, (-1)^(d+1)/d!^2); \\ Michel Marcus, Jul 13 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 13 2020
STATUS
approved