The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336240 Numbers k such that k = x^2+y^2+z^2 = x^3+y^3+z^3 for some integers x,y,z. 1
 0, 1, 2, 3, 6, 27, 29, 354, 729, 2027, 6859, 7778, 19846, 20577, 23277, 35937, 58754, 130979, 132651, 232282, 265602, 332750, 389017, 499853, 885602, 970299, 1492779, 2146689, 2413154, 3764477, 4330747, 5694978, 5929741, 8120601, 8388227, 12068354, 14348907, 17005629, 23522402, 24137569, 31999403, 34328125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Contains (2*m^2 + 1)^3 corresponding to x=2*m^2+1, y=-z=2*m^3+m, and m^6/2 - 3*m^2/2 + 3 corresponding to x=-m^2+1, y=-m^3/2+m/2+1, z=m^3/2-m/2+1. Are there other infinite parametric families of solutions? LINKS EXAMPLE a(6)=27 is in the sequence because 27 = (-3)^2 + 3^2 + 3^2 = (-3)^3 + 3^3 + 3^3. a(7)=29 is in the sequence because 29 = (-2)^2 + (-3)^2 + 4^2 = (-2)^3 + (-3)^3 + 4^3. MAPLE N:= 2*10^5: # for all terms <= N R:= NULL: for xx from 0 while 3*xx^2 <= N do   for yy from xx while xx^2 + 2*yy^2 <= N do     for zz from yy while xx^2 + yy^2 + zz^2 <= N do       t:= xx^2 + yy^2 + zz^2;       c:= [xx^3, yy^3, zz^3];       if member(t, {seq(seq(seq(e1*c[1]+e2*c[2]+e3*c[3], e1=[-1, 1]), e2=[-1, 1]), e3=[-1, 1])}) then R:= R, t;  fi od od od: sort(convert({R}, list)); CROSSREFS Cf. A336205. Sequence in context: A090445 A228346 A269996 * A336458 A348867 A018318 Adjacent sequences:  A336237 A336238 A336239 * A336241 A336242 A336243 KEYWORD nonn AUTHOR Robert Israel, Jul 13 2020 EXTENSIONS a(27)-a(35) from David A. Corneth, Jul 13 2020 a(36)-a(42) from Andrew R. Booker, Jul 14 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 08:40 EST 2022. Contains 350475 sequences. (Running on oeis4.)