The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336240 Numbers k such that k = x^2+y^2+z^2 = x^3+y^3+z^3 for some integers x,y,z. 1

%I

%S 0,1,2,3,6,27,29,354,729,2027,6859,7778,19846,20577,23277,35937,58754,

%T 130979,132651,232282,265602,332750,389017,499853,885602,970299,

%U 1492779,2146689,2413154,3764477,4330747,5694978,5929741,8120601,8388227,12068354,14348907,17005629,23522402,24137569,31999403,34328125

%N Numbers k such that k = x^2+y^2+z^2 = x^3+y^3+z^3 for some integers x,y,z.

%C Contains (2*m^2 + 1)^3 corresponding to x=2*m^2+1, y=-z=2*m^3+m, and m^6/2 - 3*m^2/2 + 3 corresponding to x=-m^2+1, y=-m^3/2+m/2+1, z=m^3/2-m/2+1.

%C Are there other infinite parametric families of solutions?

%e a(6)=27 is in the sequence because 27 = (-3)^2 + 3^2 + 3^2 = (-3)^3 + 3^3 + 3^3.

%e a(7)=29 is in the sequence because 29 = (-2)^2 + (-3)^2 + 4^2 = (-2)^3 + (-3)^3 + 4^3.

%p N:= 2*10^5: # for all terms <= N

%p R:= NULL:

%p for xx from 0 while 3*xx^2 <= N do

%p for yy from xx while xx^2 + 2*yy^2 <= N do

%p for zz from yy while xx^2 + yy^2 + zz^2 <= N do

%p t:= xx^2 + yy^2 + zz^2;

%p c:= [xx^3,yy^3,zz^3];

%p if member(t, {seq(seq(seq(e1*c+e2*c+e3*c,e1=[-1,1]),e2=[-1,1]),e3=[-1,1])}) then R:= R, t; fi

%p od od od:

%p sort(convert({R},list));

%Y Cf. A336205.

%K nonn

%O 1,3

%A _Robert Israel_, Jul 13 2020

%E a(27)-a(35) from _David A. Corneth_, Jul 13 2020

%E a(36)-a(42) from _Andrew R. Booker_, Jul 14 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 07:30 EDT 2022. Contains 354112 sequences. (Running on oeis4.)