OFFSET
1,1
COMMENTS
No terms are multiples of 3.
Numbers such that (j+5)*(j-5)/48 are positive integers. Equivalent to positive integers (m+3)*(m-2)/12, with m == {2,5,6,9} mod 12 (observation made in A268539 by M. F. Hasler, Mar 02 2016).
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
FORMULA
a(n) = a(n-4) + 24.
a(n) = sqrt(48*A268539(n) + 25).
G.f.: x*(1+x)*(5-4*x+5*x^2) / ((1-x)^2*(1+x^2)). - Colin Barker, Mar 06 2016
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = 6*n-3-(1-i)*i^(-n)-(1+i)*i^n for i=sqrt(-1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2-sqrt(2))*Pi/12. - Amiram Eldar, Dec 31 2021
MAPLE
MATHEMATICA
Table[24 n + {5, 11, 13, 19}, {n, 0, 12}] // Flatten (* Michael De Vlieger, Mar 07 2016 *)
Table[6n-3-(1-I)*I^(-n)-(1+I)*I^n, {n, 80}] (* Wesley Ivan Hurt, Jun 04 2016 *)
LinearRecurrence[{2, -2, 2, -1}, {5, 11, 13, 19}, 60] (* Harvey P. Dale, Nov 17 2017 *)
PROG
(Magma) I:=[5, 11, 13, 19]; [n le 4 select I[n] else Self(n-4) + 24 : n in [1..60]]; // Vincenzo Librandi, Mar 06 2016
(PARI) Vec(x*(1+x)*(5-4*x+5*x^2)/((1-x)^2*(1+x^2)) + O(x^100)) \\ Colin Barker, Mar 06 2016
(Magma) [n : n in [0..400] | n mod 24 in [5, 11, 13, 19]]; // Wesley Ivan Hurt, Jun 04 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bob Selcoe, Mar 05 2016
EXTENSIONS
Incorrect term 252 replaced by two missing terms 251 and 253 by Colin Barker, Mar 06 2016
STATUS
approved