login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104216
Primes p such that the sum of the digits of the p-th lower twin prime is a lower twin prime.
0
5, 11, 13, 19, 29, 31, 43, 71, 97, 101, 109, 151, 157, 163, 191, 197, 211, 223, 227, 239, 241, 269, 281, 283, 347, 359, 401, 409, 421, 433, 443, 503, 541, 571, 617, 643, 677, 691, 727, 733, 739, 751, 773, 787, 839, 877, 907, 919, 929, 937, 953, 971, 977, 991
OFFSET
1,1
EXAMPLE
The 13th lower twin prime is 179. 1+7+9=17 the lower twin prime of the twin pair (17,19).
PROG
(PARI) sdtwtwnp(n) = { local(x, y); forprime(x=1, n, y=sumdigits(twinl(x)); if(istwin(y)<0, print1(x", ") ) ) }
sumdigits(n) = { local(x, j, s=0); x=digits(n); for(j=1, length(x), s+=x[j]; ); return(s) }
digits(n) = { return(eval(Vec(Str(n)))) }
twinl(n) = { local(c, x); c=0; x=1; while(c<n, if(isprime(prime(x)+2), c++); x++; ); return(prime(x-1)) }
istwin(n) = /* Return -1 if n is a lower twin, 1 if upper, otherwise return 0 */ { local(p1, p2); if(isprime(n), p1=n-2; p2=n+2; if(isprime(p1), return(1)); if(isprime(p2), return(-1)); return(0) ) }
CROSSREFS
Cf. A001359.
Sequence in context: A206581 A292940 A098085 * A269819 A040144 A019395
KEYWORD
easy,nonn,base
AUTHOR
Cino Hilliard, Mar 13 2005
STATUS
approved