login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104215
Numbers n such that the sum of the digits of the n-th lower twin prime is a lower twin prime.
0
1, 5, 11, 13, 14, 15, 16, 18, 19, 24, 29, 31, 32, 33, 35, 36, 40, 43, 48, 52, 55, 57, 62, 63, 64, 69, 71, 74, 77, 80, 82, 84, 85, 86, 88, 94, 97, 98, 101, 106, 109, 111, 112, 115, 116, 117, 118, 124, 125, 130, 132, 135, 138, 140, 143, 145, 151, 154, 157, 160, 162, 163
OFFSET
1,2
EXAMPLE
The 13th lower twin prime is 179. 1+7+9=17 the lower twin prime of the twin pair (17,19).
PROG
(PARI) sdtwtw(n) = { local(x, y); for(x=1, n, y=sumdigits(twinl(x)); if(istwin(y)<0, print1(x", ") ) ) } sumdigits(n) = \ The sum of the digits of n { local(x, j, s=0); x=digits(n); for(j=1, length(x), s+=x[j]; ); return(s) } digits(n) = \ The vector of the digits of n { return(eval(Vec(Str(n)))) } twinl(n) = \The n-th lower twin prime { local(c, x); c=0; x=1; while(c<n, if(isprime(prime(x)+2), c++); x++; ); return(prime(x-1)) } istwin(n) = \Return -1 if n is a lower twin, 1 if upper, otherwise return 0 { local(p1, p2); if(isprime(n), p1=n-2; p2=n+2; if(isprime(p1), return(1)); if(isprime(p2), return(-1)); return(0) ) }
CROSSREFS
Sequence in context: A176821 A070369 A357995 * A287123 A227146 A251965
KEYWORD
easy,nonn,base
AUTHOR
Cino Hilliard, Mar 13 2005
STATUS
approved