

A328209


Numbers m such that m and m+1 are consecutive ZeckendorfNiven numbers (A328208).


11



1, 2, 3, 4, 5, 12, 13, 21, 26, 55, 68, 80, 89, 92, 93, 110, 152, 183, 195, 207, 233, 236, 237, 254, 291, 304, 327, 364, 377, 380, 381, 398, 435, 471, 484, 555, 584, 605, 609, 639, 644, 759, 795, 834, 875, 894, 930, 987, 992, 1004, 1011, 1028, 1047, 1076, 1220
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..55.
Helen G. Grundman, Consecutive ZeckendorfNiven and lazyFibonacciNiven numbers, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272276.


EXAMPLE

12 is in the sequence since both 12 and 13 are in A328208: A007895(12) = 3 is a divisor of 12, and A007895(13) = 1 is a divisor of 13.


MATHEMATICA

z[n_] := Length[DeleteCases[NestWhileList[#  Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; aQ[n_] := Divisible[n, z[n]]; c = 0; k = 1; s = {}; v = Table[1, {2}]; While[c < 60, If[aQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k  1]]]; k++]; s (* after Alonso del Arte at A007895 *)


CROSSREFS

Cf. A005349, A007895, A328208.
Sequence in context: A039007 A050745 A077375 * A250049 A132027 A306077
Adjacent sequences: A328206 A328207 A328208 * A328210 A328211 A328212


KEYWORD

nonn


AUTHOR

Amiram Eldar, Oct 07 2019


STATUS

approved



