Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 09 2020 03:06:56
%S 1,744,875,924,1115,1575,1704,1955,2904,3815,5495,5844,6125,6335,6824,
%T 7136,7314,8154,8225,8360,8784,9414,10535,10744,10935,11976,12047,
%U 13194,13404,13475,18024,19368,19943,20615,21791,22224,22560,23807,24143,24576,25752,26424,26999
%N Positive numbers k such that k and k + 1 are both positive negaFibonacci-Niven numbers (A331085) and -k and -(k + 1) are both negative negaFibonacci-Niven numbers (A331088).
%C Positive numbers k such that both k and k + 1 are in A331091.
%H Amiram Eldar, <a href="/A331092/b331092.txt">Table of n, a(n) for n = 1..10000</a>
%t ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
%t f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
%t negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
%t negFibQ[n_] := Divisible[n, negaFibTermsNum[n]] && Divisible[n, negaFibTermsNum[-n]];
%t nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 45, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq
%Y Intersection of A331086 and A331089.
%Y Cf. A331085, A331088, A331091.
%K nonn,base
%O 1,2
%A _Amiram Eldar_, Jan 08 2020