login
A059370
Triangle of numbers obtained by inverting infinite matrix defined in A059369, read from right to left.
3
1, 1, -2, 1, -4, 2, 1, -6, 8, -4, 1, -8, 18, -16, -4, 1, -10, 32, -44, 12, -48, 1, -12, 50, -96, 72, -96, -336, 1, -14, 72, -180, 216, -216, -480, -2928, 1, -16, 98, -304, 500, -544, -376, -4672, -28144, 1, -18, 128, -476, 996, -1312, 256, -5856, -45520, -298528
OFFSET
0,3
EXAMPLE
Triangle starts
1;
1, -2;
1, -4, 2;
1, -6, 8, -4;
1, -8, 18, -16, -4;
1, -10, 32, -44, 12, -48;
1, -12, 50, -96, 72, -96, -336;
1, -14, 72, -180, 216, -216, -480, -2928;
1, -16, 98, -304, 500, -544, -376, -4672, -28144;
1, -18, 128, -476, 996, -1312, 256, -5856, -45520, -298528;
... - Joerg Arndt, Apr 20 2013
MATHEMATICA
nmax = 10; t[n_, k_] := t[n, k] = Sum[(m+1)!*t[n-m-1, k-1], {m, 0, n-k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; Reverse /@ Inverse[tnk] // DeleteCases[#, 0, 2]& // Flatten (* Jean-François Alcover, Jun 14 2013 *)
CROSSREFS
KEYWORD
sign,tabl,easy
AUTHOR
N. J. A. Sloane, Jan 28 2001
EXTENSIONS
More terms from Vladeta Jovovic, Mar 05 2001
STATUS
approved