login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of numbers T(n,k) = T(n-1,k-1) + ((n+k-1)/k)*T(n-1,k), n >= 1, 1 <= k <= n, with T(n,1) = n!, T(n,n) = 1; read from right to left.
3

%I #16 Jan 22 2020 14:48:24

%S 1,1,2,1,4,6,1,6,16,24,1,8,30,72,120,1,10,48,152,372,720,1,12,70,272,

%T 828,2208,5040,1,14,96,440,1576,4968,14976,40320,1,16,126,664,2720,

%U 9696,33192,115200,362880,1,18,160,952,4380,17312,64704,247968,996480

%N Triangle of numbers T(n,k) = T(n-1,k-1) + ((n+k-1)/k)*T(n-1,k), n >= 1, 1 <= k <= n, with T(n,1) = n!, T(n,n) = 1; read from right to left.

%C Another version of triangle in A090238. - _Philippe Deléham_, Jun 14 2007

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.

%F G.f. for k-th diagonal: (Sum_{i >= 1} i!*t^i)^k = Sum_{n >= k} T(n, k)*t^n.

%F T(n,k) = n! if k=1, 1 if k=n, Sum_{m=0..n-k} (m+1)!*T(n-m-1,k-1) otherwise. - _Vladimir Kruchinin_, Aug 18 2010

%e When read from left to right the rows {T(n,k), 1 <= k <= n} for n=1,2,3,... are 1; 2,1; 6,4,1; 24,16,6,1; ...

%t nmax = 10; t[n_, k_] := Sum[(m+1)!*t[n-m-1, k-1], {m, 0, n-k}]; t[n_, 1] = n!; t[n_, n_] = 1; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, n, 1, -1}]] (* _Jean-François Alcover_, Nov 14 2011 *)

%Y Cf. A059370, A059371.

%K nonn,tabl,easy,nice

%O 1,3

%A _N. J. A. Sloane_, Jan 28 2001

%E More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001