|
|
A006011
|
|
a(n) = n^2*(n^2 - 1)/4.
(Formerly M3044)
|
|
22
|
|
|
0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Products of two consecutive triangular numbers (A000217).
a(n) is the number of Lyndon words of length 4 on an n-letter alphabet. A Lyndon word is a primitive word that is lexicographically earliest in its cyclic rotation class. For example, a(2)=3 counts 1112, 1122, 1222. - David Callan, Nov 29 2007
a(n) is the Wiener index of the triangular graph T(n+1). - Emeric Deutsch, Aug 26 2013
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 3*(1 + x) / (1 - x)^5.
a(n) = Sum_{i=1..n-1} i*(i^2+n) for n > 1 (see Example section). - Bruno Berselli, Aug 29 2014
Sum_{n>=2} 1/a(n) = 7 - 2*Pi^2/3 = 0.42026373260709425411... . - Vaclav Kotesovec, Apr 27 2016
Sum_{n>=2} (-1)^n/a(n) = Pi^2/3 - 3. - Amiram Eldar, Nov 02 2021
|
|
EXAMPLE
|
After the zeros, the sequence is provided by the row sums of the triangle:
3;
4, 14;
5, 16, 39;
6, 18, 42, 84;
7, 20, 45, 88, 155;
8, 22, 48, 92, 160, 258;
9, 24, 51, 96, 165, 264, 399;
10, 26, 54, 100, 170, 270, 406, 584;
11, 28, 57, 104, 175, 276, 413, 592, 819;
12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc.,
where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
|
|
MAPLE
|
n^2*(n^2-1)/4 ;
|
|
MATHEMATICA
|
Table[n^2 (n^2 - 1)/4, {n, 0, 38}]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|