login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327768
Number of colored compositions of n using all colors of a 2-set such that all parts have different color patterns and the patterns for parts i are sorted and have i colors (in arbitrary order).
2
0, 0, 3, 18, 60, 210, 798, 2462, 7891, 25148, 84173, 257558, 810924, 2515962, 7706020, 24261554, 73746402, 224417982, 683672754, 2057559942, 6177146990, 18671429714, 55589344618, 165403412230, 491940143015, 1452537550800, 4280665171599, 12578264746522
OFFSET
0,3
LINKS
EXAMPLE
a(2) = 3: 2ab, 2ba, 1a1b.
a(3) = 18: 3aab, 3aba, 3baa, 3abb, 3bab, 3bba, 2aa1b, 2ab1a, 2ba1a, 2ab1b, 2ba1b, 2bb1a, 1a2ab, 1a2ba, 1a2bb, 1b2aa, 1b2ab, 1b2ba.
MAPLE
b:= proc(n, i, k, p) option remember;
`if`(n=0, p!, `if`(i<1, 0, add(binomial(k^i, j)*
b(n-i*j, min(n-i*j, i-1), k, p+j)/j!, j=0..n/i)))
end:
a:= n-> (k-> add(b(n$2, i, 0)*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
seq(a(n), n=0..27);
CROSSREFS
Column k=2 of A327673.
Sequence in context: A012763 A006011 A012779 * A074439 A299031 A210366
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2019
STATUS
approved