login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327770
a(n) = (23 * 7^(2*n) + 1)/24. Sequence related to the properties of the partition function A000041 modulo a power of 7.
6
1, 47, 2301, 112747, 5524601, 270705447, 13264566901, 649963778147, 31848225129201, 1560563031330847, 76467588535211501, 3746911838225363547, 183598680073042813801, 8996335323579097876247, 440820430855375795936101, 21600201111913414000868947
OFFSET
0,2
COMMENTS
If p(n) = A000041(n) is the partition function, Watson (1938) proved that p(7^(2*m)*n + a(m)) == 0 mod 7^(m+1) for n >= 0 and m >= 1. (Obviously, this is not always true for m = 0).
For m=1 and n=0, p(7^(2*1)*0 + a(1)) = p(47) = 7^(1+1) * 2546.
For m=1 and n=1, p(7^(2*1)*1 + a(1)) = p(96) = 7^(1+1) * 2410496.
For m=1 and n=2, p(7^(2*1)*2 + a(1)) = p(145) = 7^(1+1) * 508344041.
For m=2 and n=0, p(7^(2*2)*0 + a(2)) = p(2301) = 7^(2+1) * 49629361905981812695622866669844910256876089360.
Essentially the same as A052463. - R. J. Mathar, Oct 08 2019
LINKS
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see pp. 118 and 124.
Eric Weisstein's World of Mathematics, Partition Function P Congruences.
Wikipedia, G. N. Watson.
FORMULA
From Colin Barker, Sep 25 2019: (Start)
G.f.: (1 - 3*x) / ((1 - x)*(1 - 49*x)).
a(n) = 50*a(n-1) - 49*a(n-2) for n>1.
(End)
MATHEMATICA
CoefficientList[Series[(1 - 3 x)/((1 - x) (1 - 49 x)), {x, 0, 15}], x] (* Michael De Vlieger, Sep 27 2019 *)
LinearRecurrence[{50, -49}, {1, 47}, 20] (* Harvey P. Dale, Mar 09 2023 *)
PROG
(PARI) a(n) = (23 * 7^(2*n) + 1)/24; \\ Michel Marcus, Sep 25 2019
(PARI) Vec((1 - 3*x) / ((1 - x)*(1 - 49*x)) + O(x^20)) \\ Colin Barker, Sep 25 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Petros Hadjicostas, Sep 24 2019
STATUS
approved