OFFSET
0,2
COMMENTS
If p(n) = A000041(n) is the partition function, Watson (1938) proved that p(7^(2*m)*n + a(m)) == 0 mod 7^(m+1) for n >= 0 and m >= 1. (Obviously, this is not always true for m = 0).
For m=1 and n=0, p(7^(2*1)*0 + a(1)) = p(47) = 7^(1+1) * 2546.
For m=1 and n=1, p(7^(2*1)*1 + a(1)) = p(96) = 7^(1+1) * 2410496.
For m=1 and n=2, p(7^(2*1)*2 + a(1)) = p(145) = 7^(1+1) * 508344041.
For m=2 and n=0, p(7^(2*2)*0 + a(2)) = p(2301) = 7^(2+1) * 49629361905981812695622866669844910256876089360.
Essentially the same as A052463. - R. J. Mathar, Oct 08 2019
LINKS
Colin Barker, Table of n, a(n) for n = 0..500
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see pp. 118 and 124.
Eric Weisstein's World of Mathematics, Partition Function P Congruences.
Wikipedia, G. N. Watson.
Index entries for linear recurrences with constant coefficients, signature (50,-49).
FORMULA
From Colin Barker, Sep 25 2019: (Start)
G.f.: (1 - 3*x) / ((1 - x)*(1 - 49*x)).
a(n) = 50*a(n-1) - 49*a(n-2) for n>1.
(End)
MATHEMATICA
CoefficientList[Series[(1 - 3 x)/((1 - x) (1 - 49 x)), {x, 0, 15}], x] (* Michael De Vlieger, Sep 27 2019 *)
LinearRecurrence[{50, -49}, {1, 47}, 20] (* Harvey P. Dale, Mar 09 2023 *)
PROG
(PARI) a(n) = (23 * 7^(2*n) + 1)/24; \\ Michel Marcus, Sep 25 2019
(PARI) Vec((1 - 3*x) / ((1 - x)*(1 - 49*x)) + O(x^20)) \\ Colin Barker, Sep 25 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Petros Hadjicostas, Sep 24 2019
STATUS
approved