login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327673
Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i are sorted and have i colors (in arbitrary order); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
6
1, 0, 1, 0, 1, 3, 0, 3, 18, 19, 0, 3, 60, 171, 121, 0, 5, 210, 1173, 1996, 1041, 0, 11, 798, 7512, 22784, 27225, 11191, 0, 13, 2462, 39708, 196904, 411115, 382086, 130663, 0, 19, 7891, 204987, 1546042, 4991815, 7843848, 5932843, 1731969
OFFSET
0,6
LINKS
FORMULA
Sum_{k=1..n} k * T(n,k) = A327676(n).
EXAMPLE
T(3,1) = 3: 3aaa, 2aa1a, 1a2aa.
T(3,2) = 18: 3aab, 3aba, 3baa, 3abb, 3bab, 3bba, 2aa1b, 2ab1a, 2ba1a, 2ab1b, 2ba1b, 2bb1a, 1a2ab, 1a2ba, 1a2bb, 1b2aa, 1b2ab, 1b2ba.
T(3,3) = 19: 3abc, 3acb, 3bac, 3bca, 3cab, 3cba, 2ab1c, 2ac1b, 2ba1c, 2bc1a, 2ca1b, 2cb1a, 1a2bc, 1a2cb, 1b2ac, 1b2ca, 1c2ab, 1c2ba, 1a1b1c.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 3;
0, 3, 18, 19;
0, 3, 60, 171, 121;
0, 5, 210, 1173, 1996, 1041;
0, 11, 798, 7512, 22784, 27225, 11191;
0, 13, 2462, 39708, 196904, 411115, 382086, 130663;
...
MAPLE
b:= proc(n, i, k, p) option remember;
`if`(n=0, p!, `if`(i<1, 0, add(binomial(k^i, j)*
b(n-i*j, min(n-i*j, i-1), k, p+j)/j!, j=0..n/i)))
end:
T:= (n, k)-> add(b(n$2, i, 0)*(-1)^(k-i)*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, i_, k_, p_] := b[n, i, k, p] = If[n==0, p!, If[i<1, 0, Sum[Binomial[ k^i, j] b[n - i j, Min[n - i j, i - 1], k, p + j]/j!, {j, 0, n/i}]]];
T[n_, k_] := Sum[b[n, n, i, 0] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 30 2020, after Maple *)
CROSSREFS
Columns k=0-2 give: A000007, A032020 (for n>0), A327768.
Main diagonal gives A327674.
Row sums give A327675.
T(2n,n) gives A327678.
Sequence in context: A275080 A128252 A230675 * A279657 A272722 A229694
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 21 2019
STATUS
approved