login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327670
Sum of divisors of n that have an even number of distinct prime factors.
2
1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 19, 1, 15, 16, 1, 1, 25, 1, 31, 22, 23, 1, 43, 1, 27, 1, 43, 1, 32, 1, 1, 34, 35, 36, 73, 1, 39, 40, 71, 1, 42, 1, 67, 61, 47, 1, 91, 1, 61, 52, 79, 1, 79, 56, 99, 58, 59, 1, 64, 1, 63, 85, 1, 66, 62, 1, 103, 70, 60, 1, 169, 1, 75, 91
OFFSET
1,6
LINKS
FORMULA
G.f.: Sum_{k>=1} A030231(k) * x^A030231(k) / (1 - x^A030231(k)).
L.g.f.: log(B(x)) = Sum_{n>=1} a(n) * x^n / n, where B(x) = g.f. of A285798.
a(n) = A000203(n) - A327669(n).
MAPLE
with(numtheory):
a:= n-> add(`if`(nops(factorset(d))::even, d, 0), d=divisors(n)):
seq(a(n), n=1..80); # Alois P. Heinz, Sep 21 2019
MATHEMATICA
a[n_] := DivisorSum[n, # &, EvenQ[PrimeNu[#]] &]; Table[a[n], {n, 1, 75}]
CROSSREFS
Cf. A000961 (positions of 1's), A000203, A030231, A049060, A285798, A318676, A327669.
Sequence in context: A284118 A165725 A214685 * A178637 A364092 A295294
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 21 2019
STATUS
approved