login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i are sorted and have i colors (in arbitrary order); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
6

%I #18 May 30 2020 09:21:09

%S 1,0,1,0,1,3,0,3,18,19,0,3,60,171,121,0,5,210,1173,1996,1041,0,11,798,

%T 7512,22784,27225,11191,0,13,2462,39708,196904,411115,382086,130663,0,

%U 19,7891,204987,1546042,4991815,7843848,5932843,1731969

%N Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i are sorted and have i colors (in arbitrary order); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%H Alois P. Heinz, <a href="/A327673/b327673.txt">Rows n = 0..140, flattened</a>

%F Sum_{k=1..n} k * T(n,k) = A327676(n).

%e T(3,1) = 3: 3aaa, 2aa1a, 1a2aa.

%e T(3,2) = 18: 3aab, 3aba, 3baa, 3abb, 3bab, 3bba, 2aa1b, 2ab1a, 2ba1a, 2ab1b, 2ba1b, 2bb1a, 1a2ab, 1a2ba, 1a2bb, 1b2aa, 1b2ab, 1b2ba.

%e T(3,3) = 19: 3abc, 3acb, 3bac, 3bca, 3cab, 3cba, 2ab1c, 2ac1b, 2ba1c, 2bc1a, 2ca1b, 2cb1a, 1a2bc, 1a2cb, 1b2ac, 1b2ca, 1c2ab, 1c2ba, 1a1b1c.

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 1, 3;

%e 0, 3, 18, 19;

%e 0, 3, 60, 171, 121;

%e 0, 5, 210, 1173, 1996, 1041;

%e 0, 11, 798, 7512, 22784, 27225, 11191;

%e 0, 13, 2462, 39708, 196904, 411115, 382086, 130663;

%e ...

%p b:= proc(n, i, k, p) option remember;

%p `if`(n=0, p!, `if`(i<1, 0, add(binomial(k^i, j)*

%p b(n-i*j, min(n-i*j, i-1), k, p+j)/j!, j=0..n/i)))

%p end:

%p T:= (n, k)-> add(b(n$2, i, 0)*(-1)^(k-i)*binomial(k, i), i=0..k):

%p seq(seq(T(n, k), k=0..n), n=0..10);

%t b[n_, i_, k_, p_] := b[n, i, k, p] = If[n==0, p!, If[i<1, 0, Sum[Binomial[ k^i, j] b[n - i j, Min[n - i j, i - 1], k, p + j]/j!, {j, 0, n/i}]]];

%t T[n_, k_] := Sum[b[n, n, i, 0] (-1)^(k - i) Binomial[k, i], {i, 0, k}];

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 30 2020, after Maple *)

%Y Columns k=0-2 give: A000007, A032020 (for n>0), A327768.

%Y Main diagonal gives A327674.

%Y Row sums give A327675.

%Y T(2n,n) gives A327678.

%Y Cf. A327244, A327676.

%K nonn,tabl

%O 0,6

%A _Alois P. Heinz_, Sep 21 2019