login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128252
T(n,m) is the smallest number that starts a sequence of n+1 consecutive integers whose Euler totient Functions are multiples of m.
0
0, 0, 3, 0, 3, 13, 0, 3, 26, 12, 0, 3, 35, 15, 61, 0, 3, 35, 32, 99, 13, 0, 3, 151, 32, 121, 26, 86, 0, 3, 151, 32, 121, 35, 637, 15, 0, 3, 151, 72, 3688, 35, 841, 15, 37, 0, 3, 727, 108, 5608, 151, 2694, 87, 216, 61, 0, 3, 1453, 108, 5697, 151, 66668, 87, 216, 99, 267
OFFSET
1,3
COMMENTS
T(n,m) is the smallest 'a' such that all A000010(a+i), 0<=i<=n, are multiples of m. T(7,3)=151 because phi(151)=2*3*5, phi(152)=2^3*3^2, phi(153)=2^5*3 up to phi(158)=2*3*13 are all multiples of 3 and the numbers up to 150 do not start such a run of 8 elements. Table is read along antidiagonals.
REFERENCES
Ho-Joo Lee and Gerald Myerson, Consecutive Integers whose totients are multiples of n, Solution to, American Mathematical Monthly 110:2 (2003), pp. 158-159.
EXAMPLE
n\m.1.2....3...4.....5....6.......7...8.....9....10
--------------------------------------------------
1|..0.3...13..12....61...13......86..15....37....61.
2|..0.3...26..15....99...26.....637..15...216....99.
3|..0.3...35..32...121...35.....841..87...216...121.
4|..0.3...35..32...121...35....2694..87..1082...121.
5|..0.3..151..32..3688..151...66668.230..2916..3688.
6|..0.3..151..72..5608..151..168252.285..2916..5608.
7|..0.3..151.108..5697..151..168252.285..2916..5697.
8|..0.3..727.108.31800..727.1201204.403.37366.31800.
9|..0.3.1453.108.31800.1453.1201204.798.48505.31800
MAPLE
T := proc(n, m) local a, i, fail ; a :=0 ; while true do fail := false ; for i from 0 to n do if numtheory[phi](a+i) mod m <> 0 then fail := true ; break ; fi ; od ; if fail = false then RETURN(a) ; else a := a+1 ; fi ; od ; end: for d from 2 to 12 do for n from d-1 to 1 by -1 do printf("%d, ", T(n, d-n)) ; od ; od;
MATHEMATICA
t[n_, m_] := Module[{a, i, fail}, a = 0; While[True, fail = False; For[i = 0, i <= n, i++, If[Mod[EulerPhi[a+i], m] != 0, fail = True; Break[]]]; If[fail == False, Return[a], a++]]]; Table[t[n-m+1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Maple *)
CROSSREFS
Sequence in context: A176005 A211963 A275080 * A230675 A327673 A279657
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, May 03 2007
STATUS
approved