OFFSET
1,3
COMMENTS
T(n,m) is the smallest 'a' such that all A000010(a+i), 0<=i<=n, are multiples of m. T(7,3)=151 because phi(151)=2*3*5, phi(152)=2^3*3^2, phi(153)=2^5*3 up to phi(158)=2*3*13 are all multiples of 3 and the numbers up to 150 do not start such a run of 8 elements. Table is read along antidiagonals.
REFERENCES
Ho-Joo Lee and Gerald Myerson, Consecutive Integers whose totients are multiples of n, Solution to, American Mathematical Monthly 110:2 (2003), pp. 158-159.
EXAMPLE
n\m.1.2....3...4.....5....6.......7...8.....9....10
--------------------------------------------------
1|..0.3...13..12....61...13......86..15....37....61.
2|..0.3...26..15....99...26.....637..15...216....99.
3|..0.3...35..32...121...35.....841..87...216...121.
4|..0.3...35..32...121...35....2694..87..1082...121.
5|..0.3..151..32..3688..151...66668.230..2916..3688.
6|..0.3..151..72..5608..151..168252.285..2916..5608.
7|..0.3..151.108..5697..151..168252.285..2916..5697.
8|..0.3..727.108.31800..727.1201204.403.37366.31800.
9|..0.3.1453.108.31800.1453.1201204.798.48505.31800
MAPLE
T := proc(n, m) local a, i, fail ; a :=0 ; while true do fail := false ; for i from 0 to n do if numtheory[phi](a+i) mod m <> 0 then fail := true ; break ; fi ; od ; if fail = false then RETURN(a) ; else a := a+1 ; fi ; od ; end: for d from 2 to 12 do for n from d-1 to 1 by -1 do printf("%d, ", T(n, d-n)) ; od ; od;
MATHEMATICA
t[n_, m_] := Module[{a, i, fail}, a = 0; While[True, fail = False; For[i = 0, i <= n, i++, If[Mod[EulerPhi[a+i], m] != 0, fail = True; Break[]]]; If[fail == False, Return[a], a++]]]; Table[t[n-m+1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, May 03 2007
STATUS
approved